TS5 (and encoder-decoder models)

THE
U UNIVERSITY
OF UTAH

Slides credit: Daniel Kashabi, Collin Raffel, Abhishek Panigrahi, Victoria Graf and others

Outline

 Encoders, decoders and encoder-decoders
* Whatis T57

* Design choices

Outline

 Encoders, decoders and encoder-decoders
* Whatis T57

* Design choices

Three different kinds of attention

Output
Probabilities

% Linear

(shifted right)

(.)
. Add & N
Encoder self-attention [EEEERET
Feed
Forward
4 | ~\ | Add & Norm z
ST Multi-Head
Feed Attention
Forward 7 Nx
Add & Norm
. N | —~(AddE Nom) T
Masked decoder self-attention VTR Ve
Attention Attention
R y) A y)
O _ | —,
Positional D Positional
Encoding ¢ Encoding
Input Output
Embedding Embedding
Encoder-decoder self-attention Inputs Outputs

Transformers are the default building blocks for NLP today

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Encoders

Transformers are the default building blocks for NLP today

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Encoders

Examples: GPT-2, GPT-3, LaMDA

M Also known as: causal or auto-regressive language
model

Natural if the goal is generation, but can not condition
Decoders on future words

Transformers are the default building blocks for NLP today

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Encoders

Examples: GPT-2, GPT-3, LaMDA

TMT Also known as: causal or auto-regressive language
model

Natural if the goal is generation, but can not condition
Decoders on future words

%ﬁf
>3]

Examples: BART, T5, Meena

Conditional generation based on an encoded input

Encoder-Decoders

Transformers are the default building blocks for NLP today

Encoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

=3

Encoder-Decoders

Decoders

Examples: GPT-2, GPT-3, LaMDA

Also known as: causal or auto-regressive language
model

Natural if the goal is generation, but can not condition
on future words

Examples: BART, T5, Meena

Conditional generation based on an encoded input

This lecture

Outline

 Encoders, decoders and encoder-decoders
* Whatis T57

* Design choices

T5: Text-To-Text Transfer Transformer

This paper:

Represent a collection of NLP tasks
in @ common format that takes in

text and produces text

An encoder decoder architecture

A thorough exploration of model

design choices

[Raffel et al 2019]

Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer

Colin Raffel* CRAFFEL@GMAIL.COM
Noam Shazeer* NOAM@GOOGLE.COM
Adam Roberts* ADAROB@QGOOGLE.COM
Katherine Lee* KATHERINELEE@QGOOGLE.COM
Sharan Narang SHARANNARANG@GOOGLE.COM
Michael Matena MMATENA@GOOGLE.COM
Yanqi Zhou YANQIZ@GOOGLE.COM
Wei Li MWEILI@GOOGLE.COM
Peter J. Liu PETERJLIU@QGOOGLE.COM

Google, Mountain View, CA 94043, USA

Editor: Ivan Titov

Abstract

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-
tuned on a downstream task, has emerged as a powerful technique in natural language
processing (NLP). The effectiveness of transfer learning has given rise to a diversity of
approaches, methodology, and practice. In this paper, we explore the landscape of transfer
learning techniques for NLP by introducing a unified framework that converts all text-based
language problems into a text-to-text format. Our systematic study compares pre-training
objectives, architectures, unlabeled data sets, transfer approaches, and other factors on
dozens of language understanding tasks. By combining the insights from our exploration
with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results
on many benchmarks covering summarization, question answering, text classification, and
more. To facilitate future work on transfer learning for NLP, we release our data set,
pre-trained models, and code.!

Keywords: transfer learning, natural language processing, multi-task learning, attention-
based models, deep learning

10

T5: Text-To-Text Transfer Transformer

This paper:

Represent a collection of NLP tasks
in @ common format that takes in

text and produces text

An encoder decoder architecture

A thorough exploration of model

design choices

[Raffel et al 2019]

Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer

Colin Raffel* CRAFFEL@GMAIL.COM
Noam Shazeer* NOAM@GOOGLE.COM
Adam Roberts* ADAROB@QGOOGLE.COM
Katherine Lee* KATHERINELEE@QGOOGLE.COM
Sharan Narang SHARANNARANG@GOOGLE.COM
Michael Matena MMATENA@GOOGLE.COM
anqi Zhou YANQIZ@GOOGLE.COM
Yanqi Zh Q@
Wei Li MWEILIQ@GOOGLE.COM
Peter J. Liu PETERJLIU@QGOOGLE.COM

Google, Mountain View, CA 94043, USA

Editor: Ivan Titov

Abstract

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-
tuned on a downstream task, has emerged as a powerful technique in natural language
processing (NLP). The effectiveness of transfer learning has given rise to a diversity of
approaches, methodology, and practice. In this paper, we explore the landscape of transfer
learning techniques for NLP by introducing a unified framework that converts all text-based
language problems into a text-to-text format. Our systematic study compares pre-training
objectives, architectures, unlabeled data sets, transfer approaches, and other factors on
dozens of language understanding tasks. By combining the insights from our exploration
with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results
on many benchmarks covering summarization, question answering, text classification, and
more. To facilitate future work on transfer learning for NLP, we release our data set,
pre-trained models, and code.!

Keywords: transfer learning, natural language processing, multi-task learning, attention-
based models, deep learning

11

The claim: All text processing tasks — text-to-text format

Translation

[“translate English to German: That is good."

"cola sentence: The

- a9 _ng afe "D ist iEo"
Linguistic acceptablllty [course is jumping well." pete o]

"not acceptable"]

. "stsb sentencel: The rhino grazed
Semantlc teXtual on the grass. sentence2: A rhino

similarity is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

Summarization of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

12

The claim: All text processing tasks — text-to-text format

Translation

[“translate English to German: That is good."

"cola sentence: The

- a9 _ng afe "D ist iEo"
Linguistic acceptablllty [course is jumping well." pete o]

"not acceptable"]

Semantic textual
similarity

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

Summarization of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

Textual entailment
Paraphrase recognition
Reading comprehension

The claim: All text processing tasks — text-to-text format

Translation

[“translate English to German: That is good."

"cola sentence: The

- a9 _ng afe "D ist iEo"
Linguistic acceptablllty [course is jumping well." pete o]

"not acceptable"]

Semantic textual
similarity

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

Summarization of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

For each task, design a template so that

Textual entailment _
the input and outputs are text

Paraphrase recognition
Reading comprehension (Some previous papers had also explored this idea)

14

Outline

 Encoders, decoders and encoder-decoders
* Whatis T57

* Design choices

15

T5: Text-To-Text Transfer Transformer

This paper:

Represent a collection of NLP tasks
in @ common format that takes in

text and produces text

An encoder decoder architecture

A thorough exploration of model

design choices

[Raffel et al 2019]

Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer

Colin Raffel* CRAFFEL@GMAIL.COM
Noam Shazeer* NOAM@GOOGLE.COM
Adam Roberts* ADAROB@QGOOGLE.COM
Katherine Lee* KATHERINELEE@QGOOGLE.COM
Sharan Narang SHARANNARANG@GOOGLE.COM
Michael Matena MMATENA@GOOGLE.COM
anqi Zhou YANQIZ@GOOGLE.COM
Yanqi Zh Q@
Wei Li MWEILIQ@GOOGLE.COM
Peter J. Liu PETERJLIU@QGOOGLE.COM

Google, Mountain View, CA 94043, USA

Editor: Ivan Titov

Abstract

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-
tuned on a downstream task, has emerged as a powerful technique in natural language
processing (NLP). The effectiveness of transfer learning has given rise to a diversity of
approaches, methodology, and practice. In this paper, we explore the landscape of transfer
learning techniques for NLP by introducing a unified framework that converts all text-based
language problems into a text-to-text format. Our systematic study compares pre-training
objectives, architectures, unlabeled data sets, transfer approaches, and other factors on
dozens of language understanding tasks. By combining the insights from our exploration
with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results
on many benchmarks covering summarization, question answering, text classification, and
more. To facilitate future work on transfer learning for NLP, we release our data set,
pre-trained models, and code.!

Keywords: transfer learning, natural language processing, multi-task learning, attention-
based models, deep learning

16

Numerous model design choices affect performance

e Whatis the model architecture?

 What is the right pre-training objective

* Which data should we use for pre-training?
* How much pre-training?
* Fine tune on one task? Fine tune on multiple tasks? Some combination?

* How big should the model be?

Numerous model design choices affect performance

e Whatis the model architecture?

 What is the right pre-training objective

* Which data should we use for pre-training?
* How much pre-training?
* Fine tune on one task? Fine tune on multiple tasks? Some combination?

* How big should the model be?

Can we understand the impact of each choice
by altering it while keeping other choices fixed?

Experimental Setup

Decide a default model

— Encoder-decoder architecture — Cvaluate on
L. . . e validation
— Pretraining objective Pretrain
. CNN/DM
BERT,,Sized
—_— encoder-decoder = — step 750000
e Transformer [SQUAD -
step 760000
Denoising SuperGLUE
objective - step 770000
= WMT14 EnDe
Cc4d !
Evaluate a design axis, fixing the rest ataset e step 780000
2'° steps .
of the parameters e - WMT16EnRo
rate sehedule 2'8 steps Evaluate all checkpoints,

234 or ~17B tokens choose the best
Constant learning rate

19

Key findings

Model Architectures

Pre-training Objectives
Unlabeled Datasets
Training Strategies

Scale

Encoder-decoder models outperform "decoder-only" language models

Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

20

Key findings

Model Architectures

Pre-training Objectives
Unlabeled Datasets
Training Strategies

Scale

Encoder-decoder models outperform "decoder-only" language models

Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

21

Architectures: Different Choices

3 Y4

Language model

Y, -
()

Prefix LM
Yl

X X

2

3

Y

D>z
>

=

zd
i

X X

1

2

X

Y

Y,

Architectures: Different Attention Masks

Fully-visible Causal Causal with prefix

B | | | | W ..-II

Allows the self attention Doesn’t allow output Allows to fully-visible
mechanism to attend to elements to look into masking on a portion of

the full input. the future input

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65

Yi Y,

e

" —

) o o

8 =S¢

()

Slide credit: Abhishek Panigrahi, Victoria Graf v s

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65

T

I
Input: Thank you for <X> me to your party <Y>.

Target: <X> inviting <Y> last week.

Decoder

Slide credit: Abhishek Panigrahi, Victoria Graf v s

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
/
Number of L_,y1 Y2
parameters % g
) /// /
8 4y
()

Slide credit: Abhishek Panigrahi, Victoria Graf v s

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65

Yi Y,

e

" —

) o o

8 =4¢

()

Number of flops

Slide credit: Abhishek Panigrahi, Victoria Graf v s

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Yi Y,
= GREH
s
8 p // /,_/.// 7
S atah
0O

Slide credit: Abhishek Panigrahi, Victoria Graf L

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46

Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.99 68.42 26.38 38.40 26.95

Decoder
<
o

Encoder
X

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.99 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Slide credit: Abhishek Panigrahi, Victoria Graf

Language model

Xo X3 Y1 Yo

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.99 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86

Language model is decoder-only

Slide credit: Abhishek Panigrahi, Victoria Graf

Language model

Xo X3 Y1 Yo

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.99 68.42 26.38 38.40 26.95
17.93 61.14 55.02 25.09 35.28 25.86

Language model Denoising P /M 74.70

Language model

Xo X3 Y1 Yo

LM looks at both input and target, while
encoder only looks at input sequence and
decoder looks at output sequence.

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.959 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39
Prefix LM
X X3 Y7 Y2 -

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.959 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39

— Halving the number of layers in encoder and decoder hurts the performance.

— Performance of Encoder and Decoder with shared parameters is better than decoder only LM

and prefix LM.

Slide credit: Abhishek Panigrahi, Victoria Graf

Key findings

Model Architectures

Pre-training Objectives
Unlabeled Datasets
Training Strategies

Scale

Encoder-decoder models outperform "decoder-only" language models

Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

35

Pretraining objectives

The paper considered multiple different kinds of pre-training objectives

The research question: What training objective is best for self-supervised pre-training?

36

Pretraining objectives

The paper considered multiple different kinds of pre-training objectives

Objective Example input Example output

Prefix language modeling Thank you for inviting me to your party last week

37

Pretraining objectives

The paper considered multiple different kinds of pre-training objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week
BERT-style denoising Thank you <M> <M> me to your party Thank you for inviting me to your party last

apple week . week

38

Pretraining objectives

The paper considered multiple different kinds of pre-training objectives

Objective Example input Example output

Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party Thank you for inviting me to your party last
apple week . week

Deshuffling party me for your to . last fun you inviting Thank you for inviting me to your party last

week Thank week

39

Pretraining objectives

The paper considered multiple different kinds of pre-training objectives

Objective
Prefix language modeling

BERT-style denoising

Deshuffling

l.i.d. noise, replace spans

Example input
Thank you for inviting

Thank you <M> <M> me to your party
apple week .

party me for your to . last fun you inviting
week Thank

Thank you <X> me to your party <Y>
week .

Example output
me to your party last week

Thank you for inviting me to your party last
week

Thank you for inviting me to your party last
week

<X> for inviting <Y> last <z>

40

Pretraining objectives

The paper considered multiple different kinds of pre-training objectives

Objective
Prefix language modeling

BERT-style denoising

Deshuffling

l.i.d. noise, replace spans

l.i.d. noise, drop tokens

Example input
Thank you for inviting

Thank you <M> <M> me to your party
apple week .

party me for your to . last fun you inviting
week Thank

Thank you <X> me to your party <Y>
week .

Thank you me to your party week .

Example output
me to your party last week

Thank you for inviting me to your party last
week

Thank you for inviting me to your party last
week

<X> for inviting <Y> last <z>

for inviting last

41

Comparing pre-training objectives
All the variants perform similarly

“Replace corrupted spans” and “Drop corrupted tokens” are more
appealing because target sequences are shorter, speeding up training.

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
Deshuffling 73.17 18.59 67.61 58.47 26.11 39.30 25.62
BERT-style (Devlin et al., 2018) 82.96 19.17 80.65 69.85 26.78 40.03 27.41
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65

Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82

How much data corruption is good enough?

Performance of the i.i.d. corruption objective with different corruption

rates

— Little corruption rate may prevent effective learning.
— Larger corruption rate leads to downstream performance degradation.

— Larger corruption rate also leads to longer targets, slowing down training.

Corruption rate GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
10% 82.82 19.00 80.38 69.55 26.87 39.28 27.44
* 15% 83.28 19.24 80.88 71.36 26.98 39.82 27.65
25% 83.00 19.54 80.96 70.48 27.04 39.83 27.47
50% 81.27 19.32 79.80 70.33 27.01 3990 27.49

Key findings

Model Architectures

Pre-training Objectives
Unlabeled Datasets
Training Strategies

Scale

Encoder-decoder models outperform "decoder-only" language models

Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

44

C4: Colossal Clean Crawled Corpus

Web-extracted text from April 2019
— English language only (Langdetect)
— /50GB

Retains
— Sentences with terminal punctuation marks
— Only one copy of three sentence spans that occur more than once

Removes
— Pages with fewer than 5 sentences
— Sentences with fewer than 3 words
— References to Javascript
— Placeholder “Lorem ipsum” text
— Obsceneties

Play with the data: https://c4-search.apps.allenai.org/

C4: Colossal Clean Crawled Corpus

Web-extracted text from April 2019
— English language only (Langdetect)

— 750GB How much data is 750GB?
_ Data set Size
Retains
* C4 745GB

— Sentences with terminal punctuation marks

— Only one copy of three sentence spans that occur more than once C4, unfiltered 6.1TB
RealNews-like 35GB

Removes W?b.Text.-hke 17GB
Wikipedia 16GB

— Pages with fewer than 5 sentences

— Sentences with fewer than 3 words Wikipedia + TBC ~ 20GB

— References to Javascript
— Placeholder “Lorem ipsum” text
— Obsceneties

Play with the data: https://c4-search.apps.allenai.org/

C4: The Data

Menu
Lemon
Introduction

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for
culinary and non-culinary purposes
throughout the world, primarily for its juice,
which has both culinary and cleaning uses.
The juice of the lemon is about 5% to 6%
citric acid, with a ph of around 2.2, giving it
a sour taste.

Article

The origin of the lemon is unknown, though
lemons are thought to have first grown in
Assam (a region in northeast India),
northern Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
orange) and citron.

Please enable JavaScript to use our site.

Home
Products
Shipping
Contact
FAQ

Dried Lemons, $3.59/pound

Organic dried lemons from our farm in
California.

Lemons are harvested and sun-dried for
maximum flavor.

Good in soups and on popcorn.

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for
culinary and non-culinary purposes
throughout the world, primarily for its juice,
which has both culinary and cleaning uses.
The juice of the lemon is about 5% to 6%
citric acid, with a ph of around 2.2, giving it
a sour taste.

Lorem ipsum dolor sit amet, consectetur
adipiscing elit.

Curabitur in tempus quam. In mollis et ante
at consectetur.

Aliquam erat volutpat.

Donec at lacinia est.

Duis semper, magna tempor interdum
suscipit, ante elit molestie urna, eget
efficitur risus nunc ac elit.

Fusce quis blandit lectus.

Mauris at mauris a turpis tristique lacinia at
nec ante.

Aenean in scelerisque tellus, a efficitur
ipsum.

Integer justo enim, ornare vitae sem non,
mollis fermentum lectus.

Mauris ultrices nisl at libero porta sodales in
ac orci.

function Ball(r) {
this.radius =r;
this.area = pi * r ** 2;
this.show = function(){
drawCircle(r);
}
}

Slide adapted from Colin Raffel

C4: The Data

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for

culinary and non-culinary purposes Organic dried lemons from our farm in
throughout the world, primarily for its juice, California.

which has both culinary and cleaning uses. Lemons are harvested and sun-dried for
The juice of the lemon is about 5% to 6% maximum flavor.

citric acid, with a ph of around 2.2, giving it Good in soups and on popcorn.

a sour taste.

The origin of the lemon is unknown, though
lemons are thought to have first grown in
Assam (a region in northeast India),
northern Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
orange) and citron.

Slide adapted from Colin Raffel

Pre-training Data: Experiment

Takeaway:

— Clean and compact data is better than large, but noisy data.

— Pre-training on in-domain data helps.

Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB 83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.34 27.21
RealNews-like 35GB 83.83 19.23 80.39 72.38 26.75 39.90 27.48
WebText-like 17GB 84.03 19.31 81.42 71.40 26.80 39.74 27.59
Wikipedia 16GB 81.85 19.31 81.29 68.01 26.94 39.69 27.67
Wikipedia + TBC 20GB 83.65 19.28 82.08 73.24 26.77 39.63 27.57

What happens if there are duplicates in the data?

Number of tokens

Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Full data set 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65
PF: 64 82.87 19.19 80.97 72.03 26.83 39.74 27.63
24k 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33
o&2 1,024 79.55 18.57 76.27 64.76 26.38 39.56 26.80
9= 4,096 76.34 ¥ 18.33 70.92 59.29 26.37 38.84 25.81

Performance degrades as the
information content shrinks

What happens if there are duplicates in the data?

Number of tokens Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Full data set 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65
PF: 64 82.87 19.19 80.97 72.03 26.83 39.74 27.63
2<5 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33
282 1,024 79.55 18.57 76.27 64.76 26.38 39.56 26.80
9= 4,096 76.34 18.33 70.92 59.29 26.37 38.84 25.81

1.0

0.8

0.6

0.4

0.2

0.0

Training loss

100

200 300
Step x 1,000

400

500

Dataset size

The model memorizes the pre-training
data, with smaller/repeated datasets

Full dataset
229
227
225
223

Key findings (recap)

Model Architectures

Pre-training Objectives

Unlabeled Datasets

Training Strategies

Scale

Encoder-decoder models outperform "decoder-only" language models

Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

We have already seen some scaling results

52

The T5 model family

Attention Encoder Decoder

Name dmodel B Qiev Heads Layers Layers >ize
Small 512 2,048 64 3 6 6 ~60M
Base /768 3,072 64 12 12 12 ~220M
Large 1,024 4,096 64 16 24 24 ~770M
3B 1,024 16,384 128 32 24 24 ~2.8B

11B 1,024 65,536 128 128 24 24 ~11B

53

A sampling of model performance

Model GLUE SST-2 MRPC F1 STS-B MNLI-m MNLI-mm SQUAD SuperGLUE BoolQ

Average Accuracy Spearman Accuracy Accuracy F1 Average Accuracy
Previous best 89.4 97.1 93.6 92.3 91.3 91.0 95.5 84.6 87.1
T5-Small 77.4 91.8 89.7 85.0 82.4 82.3 87.24 63.3 76.4
T5-Base 82.7 95.2 90.7 88.6 87.1 86.2 92.08 76.2 81.4
T5-Large 86.4 96.3 92.4 89.2 89.9 89.6 93.79 82.3 85.4
T5-3B 88.5 97.4 92.5 89.8 91.4 91.2 94.95 86.4 89.9
T5-11B 90.3 97.5 92.8 92.8 92.2 91.9 96.22 88.9 91.2

General trends
e Better than previous best results
e Larger models perform better

54

BART (Lewis et al. 2020)

Similar architecture as T5

— Performs competitive to RoBERTa and XLNet on discriminative/classification tasks

— Outperformed existing methods on generative tasks (question answering, and
summarization)

— Improved results on machine translation with fine-tuning on target language

BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension

Mike Lewis*, Yinhan Liu*, Naman Goyal*, Marjan Ghazvininejad,
Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer
Facebook Al

{mikelewis, yinhanliu, naman}@fb.com

Ssummary

e T5 and BART: Encoder decoder models

e General idea: Convert all NLP tasks into a format that the encoder-
decoder can accept

— Pretrain on large data
— Fine-tune on many different tasks together

* Easy to use today using HuggingFace

