
T5 (and encoder-decoder models)

1
Slides credit: Daniel Kashabi, Collin Raffel, Abhishek Panigrahi, Victoria Graf and others

Outline

• Encoders, decoders and encoder-decoders

• What is T5?

• Design choices

2

Outline

• Encoders, decoders and encoder-decoders

• What is T5?

• Design choices

3

Three different kinds of attention

4

Encoder self-attention

Masked decoder self-attention

Encoder-decoder self-attention

Transformers are the default building blocks for NLP today

5

Encoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Transformers are the default building blocks for NLP today

6

Encoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Decoders

Examples: GPT-2, GPT-3, LaMDA

Also known as: causal or auto-regressive language
model

Natural if the goal is generation, but can not condition
on future words

Transformers are the default building blocks for NLP today

7

Encoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Encoder-Decoders

Examples: BART, T5, Meena

Conditional generation based on an encoded input

Decoders

Examples: GPT-2, GPT-3, LaMDA

Also known as: causal or auto-regressive language
model

Natural if the goal is generation, but can not condition
on future words

Transformers are the default building blocks for NLP today

8

Encoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context

Encoder-Decoders

Examples: BART, T5, Meena

Conditional generation based on an encoded input

Decoders

Examples: GPT-2, GPT-3, LaMDA

Also known as: causal or auto-regressive language
model

Natural if the goal is generation, but can not condition
on future words

This lecture

Outline

• Encoders, decoders and encoder-decoders

• What is T5?

• Design choices

9

T5: Text-To-Text Transfer Transformer

This paper:

Represent a collection of NLP tasks
in a common format that takes in
text and produces text

An encoder decoder architecture

A thorough exploration of model
design choices

10

[Raffel et al 2019]

T5: Text-To-Text Transfer Transformer

This paper:

Represent a collection of NLP tasks
in a common format that takes in
text and produces text

An encoder decoder architecture

A thorough exploration of model
design choices

11

[Raffel et al 2019]

The claim: All text processing tasks → text-to-text format

12

Linguistic acceptability

Translation

Semantic textual
similarity

Summarization

The claim: All text processing tasks → text-to-text format

13

Linguistic acceptability

Translation

Semantic textual
similarity

Summarization

Textual entailment
Paraphrase recognition
Reading comprehension
…

The claim: All text processing tasks → text-to-text format

14

Linguistic acceptability

Translation

Semantic textual
similarity

Summarization

Textual entailment
Paraphrase recognition
Reading comprehension
…

For each task, design a template so that
the input and outputs are text

(Some previous papers had also explored this idea)

Outline

• Encoders, decoders and encoder-decoders

• What is T5?

• Design choices

15

T5: Text-To-Text Transfer Transformer

This paper:

Represent a collection of NLP tasks
in a common format that takes in
text and produces text

An encoder decoder architecture

A thorough exploration of model
design choices

16

[Raffel et al 2019]

Numerous model design choices affect performance

• What is the model architecture?
• What is the right pre-training objective
• Which data should we use for pre-training?
• How much pre-training?
• Fine tune on one task? Fine tune on multiple tasks? Some combination?
• How big should the model be?

Numerous model design choices affect performance

• What is the model architecture?
• What is the right pre-training objective
• Which data should we use for pre-training?
• How much pre-training?
• Fine tune on one task? Fine tune on multiple tasks? Some combination?
• How big should the model be?

Can we understand the impact of each choice
by altering it while keeping other choices fixed?

Experimental Setup

Decide a default model
– Encoder-decoder architecture
– Pretraining objective
– ….

Evaluate a design axis, fixing the rest
of the parameters

19

Key findings

Model Architectures Encoder-decoder models outperform "decoder-only" language models

Pre-training Objectives Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Unlabeled Datasets Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Training Strategies Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Scale Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

20

Key findings

Model Architectures Encoder-decoder models outperform "decoder-only" language models

Pre-training Objectives Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Unlabeled Datasets Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Training Strategies Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Scale Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

21

Architectures: Different Choices

Architectures: Different Attention Masks

Allows to fully-visible
masking on a portion of
input

Allows the self attention
mechanism to attend to
the full input.

Doesn’t allow output
elements to look into
the future

Architectural Variants: Experiments

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Input: Thank you for <X> me to your party <Y>.
Target: <X> inviting <Y> last week.

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Number of
parameters

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Number of flops

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Language model is decoder-only

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

LM looks at both input and target, while
encoder only looks at input sequence and
decoder looks at output sequence.

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

Slide credit: Abhishek Panigrahi, Victoria Graf

Architectural Variants: Experiments

– Halving the number of layers in encoder and decoder hurts the performance.

– Performance of Encoder and Decoder with shared parameters is better than decoder only LM
and prefix LM.

Slide credit: Abhishek Panigrahi, Victoria Graf

Key findings

Model Architectures Encoder-decoder models outperform "decoder-only" language models

Pre-training Objectives Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Unlabeled Datasets Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Training Strategies Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Scale Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

35

Pretraining objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party
apple week .

Thank you for inviting me to your party last
week

Deshuffling party me for your to . last fun you inviting
week Thank

Thank you for inviting me to your party last
week

I.i.d. noise, replace spans Thank you <X> me to your party <Y>
week .

<X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

36

The paper considered multiple different kinds of pre-training objectives

The research question: What training objective is best for self-supervised pre-training?

Pretraining objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party
apple week .

Thank you for inviting me to your party last
week

Deshuffling party me for your to . last fun you inviting
week Thank

Thank you for inviting me to your party last
week

I.i.d. noise, replace spans Thank you <X> me to your party <Y>
week .

<X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

37

The paper considered multiple different kinds of pre-training objectives

Pretraining objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party
apple week .

Thank you for inviting me to your party last
week

Deshuffling party me for your to . last fun you inviting
week Thank

Thank you for inviting me to your party last
week

I.i.d. noise, replace spans Thank you <X> me to your party <Y>
week .

<X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

38

The paper considered multiple different kinds of pre-training objectives

Pretraining objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party
apple week .

Thank you for inviting me to your party last
week

Deshuffling party me for your to . last fun you inviting
week Thank

Thank you for inviting me to your party last
week

I.i.d. noise, replace spans Thank you <X> me to your party <Y>
week .

<X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

39

The paper considered multiple different kinds of pre-training objectives

Pretraining objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party
apple week .

Thank you for inviting me to your party last
week

Deshuffling party me for your to . last fun you inviting
week Thank

Thank you for inviting me to your party last
week

I.i.d. noise, replace spans Thank you <X> me to your party <Y>
week .

<X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

40

The paper considered multiple different kinds of pre-training objectives

Pretraining objectives

Objective Example input Example output
Prefix language modeling Thank you for inviting me to your party last week

BERT-style denoising Thank you <M> <M> me to your party
apple week .

Thank you for inviting me to your party last
week

Deshuffling party me for your to . last fun you inviting
week Thank

Thank you for inviting me to your party last
week

I.i.d. noise, replace spans Thank you <X> me to your party <Y>
week .

<X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last

41

The paper considered multiple different kinds of pre-training objectives

Comparing pre-training objectives

All the variants perform similarly

“Replace corrupted spans” and “Drop corrupted tokens” are more
appealing because target sequences are shorter, speeding up training.

How much data corruption is good enough?

Performance of the i.i.d. corruption objective with different corruption
rates
– Little corruption rate may prevent effective learning.
– Larger corruption rate leads to downstream performance degradation.
– Larger corruption rate also leads to longer targets, slowing down training.

Key findings

Model Architectures Encoder-decoder models outperform "decoder-only" language models

Pre-training Objectives Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Unlabeled Datasets Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Training Strategies Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Scale Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

44

C4: Colossal Clean Crawled Corpus

Web-extracted text from April 2019
– English language only (langdetect)
– 750GB

Retains
– Sentences with terminal punctuation marks
– Only one copy of three sentence spans that occur more than once

Removes
– Pages with fewer than 5 sentences
– Sentences with fewer than 3 words
– References to Javascript
– Placeholder “Lorem ipsum” text
– Obsceneties

Play with the data: https://c4-search.apps.allenai.org/

C4: Colossal Clean Crawled Corpus

Web-extracted text from April 2019
– English language only (langdetect)
– 750GB

Retains
– Sentences with terminal punctuation marks
– Only one copy of three sentence spans that occur more than once

Removes
– Pages with fewer than 5 sentences
– Sentences with fewer than 3 words
– References to Javascript
– Placeholder “Lorem ipsum” text
– Obsceneties

Play with the data: https://c4-search.apps.allenai.org/

How much data is 750GB?

C4: The Data

Slide adapted from Colin Raffel

C4: The Data

Slide adapted from Colin Raffel

Pre-training Data: Experiment

Takeaway:
– Clean and compact data is better than large, but noisy data.
– Pre-training on in-domain data helps.

What happens if there are duplicates in the data?

Performance degrades as the
information content shrinks

What happens if there are duplicates in the data?

The model memorizes the pre-training
data, with smaller/repeated datasets

Key findings (recap)

Model Architectures Encoder-decoder models outperform "decoder-only" language models

Pre-training Objectives Fill-in-the-blank-style denoising objectives are most effective. Computational
cost is a crucial factor

Unlabeled Datasets Training on in-domain data is beneficial, but pre-training on smaller datasets can
lead to overfitting

Training Strategies Multitask learning is competitive with pre-train-then-fine-tune, but task
frequency needs careful consideration

Scale Comparison of scaling up model size, training time, and ensembled models for
optimal use of fixed compute power

52

We have already seen some scaling results

The T5 model family

Name 𝑑!"#$% 𝑑&& 𝑑'(
Attention

Heads
Encoder

Layers
Decoder

Layers Size

Small 512 2,048 64 8 6 6 ~60M
Base 768 3,072 64 12 12 12 ~220M
Large 1,024 4,096 64 16 24 24 ~770M
3B 1,024 16,384 128 32 24 24 ~2.8B
11B 1,024 65,536 128 128 24 24 ~11B

53

A sampling of model performance

Model GLUE
Average

SST-2
Accuracy MRPC F1 STS-B

Spearman
MNLI-m

Accuracy
MNLI-mm
Accuracy

SQuAD
F1

SuperGLUE
Average

BoolQ
Accuracy

Previous best 89.4 97.1 93.6 92.3 91.3 91.0 95.5 84.6 87.1

T5-Small 77.4 91.8 89.7 85.0 82.4 82.3 87.24 63.3 76.4

T5-Base 82.7 95.2 90.7 88.6 87.1 86.2 92.08 76.2 81.4

T5-Large 86.4 96.3 92.4 89.2 89.9 89.6 93.79 82.3 85.4

T5-3B 88.5 97.4 92.5 89.8 91.4 91.2 94.95 86.4 89.9

T5-11B 90.3 97.5 92.8 92.8 92.2 91.9 96.22 88.9 91.2

54

General trends
• Better than previous best results
• Larger models perform better

BART (Lewis et al. 2020)

Similar architecture as T5
– Performs competitive to RoBERTa and XLNet on discriminative/classification tasks
– Outperformed existing methods on generative tasks (question answering, and

summarization)
– Improved results on machine translation with fine-tuning on target language

Summary

• T5 and BART: Encoder decoder models

• General idea: Convert all NLP tasks into a format that the encoder-
decoder can accept
– Pretrain on large data
– Fine-tune on many different tasks together

• Easy to use today using HuggingFace

