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Sequences abound in NLP

Salt Lake City

John lives in Salt Lake City

John lives in Salt Lake City.  He enjoys hiking with his dog. His cat hates hiking.

Noun Verb Preposition Noun Noun Noun

B-PER O O B-LOC I-LOC I-LOC

And we can get very creative how we encode complex objects

Example: We can encode parse trees as a sequence of decisions needed to construct the tree



Sequences abound in NLP

Natural question: How do we model sequential inputs and outputs?
More concretely, we need a mechanism that allows us to
1. Capture sequential dependencies between inputs

2 Model uncertalnty over sequent|a| outputs
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Q0000 - - - - 0000000

A sequence may be arbitrarily long. We only have a finite number of
parameters.

1. How do we model what comes next using only a finite number of parameters?

v Markov models v" Recurrent Neural Networks v" Transformers

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

X Markov models v" Recurrent Neural Networks v" Transformers

3. Can we build models that can encode the meaning of items in a sequence in parallel?

X Markov models X Recurrent Neural Networks v" Transformers

10



Outline

The challenge of modeling sequences

The transformer architecture
— The big picture

Details and fine print

The impact of transformers

11



Recurrent neural networks revisitead

RNNs consume one input at each time step

To process (i.e., apply forward pass or backward pass) a sequence with n

elements, this will take O (n) steps
— Doesn’t seem like a problem. But recall this is for each example
* And we will be training on millions-to-billions of sequences
— This affects the speed of training because we cannot parallelize over the sequence
elements

Can we have a sequence model that operates on all n inputs in parallel?
— That is each forward pass is O(1) time?

12



“The Transformer paper”: NeurlPS 2017

Focus: machine translation

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez" Lukasz Kaiser"
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin® *
illia.polosukhin@gmail.com

“« .
We propose a new simple network e
The dominant sequence transduction models are based on complex recurrent or

architecture, the Transformer,
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Transformer architecture: Vaswani et al 2017

Output
Probabilities

Multi-Head

Attention
Nx
Nx

Add & Norm Masked

Multi-Head Mutti-Head
Attention Attention

L% ) LY )

\ S J N jr— )
Positional ) @ Positional
Encoding 'Y Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Let us unpack this
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This is the transformer encoder. The decoder transformer has a bit more
detail. We will encounter the details later
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Self attention: An example
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Self attention: An example

Input Thinking
Embedding X
Queries g1 |:|:|:|
For every element of
the sequence, create
three vectors that are
called its query, key Keys <« I
and value vectors.
Values vil T 1]
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Self attention: An example

Input

Embedding
Queries
Keys
Values

Score

X1

V1

Thinking

g1 * Ki=

Images from https://jalammar.github.io/illustrated-transformer/

For each word, compute the self attention.

First compute the dot product of its query
vector with the key vector of all words in
the sentence

Machines
X2
Q2
K2
V2
qi* ke =
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For each word, compute the self attention.

Self attention: An example

Then, normalize

Input Thinking Machines
Embedding X1 X2

Queries q1 qz

Keys K1 K2

Values V1 V2

Score g ® ki = gi* ke =
Divide by 8 ( v/dj )

Softmax

53
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Use the attention probabilities to weigh

Se |f atte nt|o N: An exam p | e the value vectors to produce the output

vector for that word

Input Thinking Machines
Embedding X1 |:|:|:|:| X2 \:|:|:|:|
Queries q1 ED:‘ q2 ED:‘
Keys [ [T
Values Vi Djj V2 Djj
Score gi e ki= gi e ko =

Divide by 8 ( Vd; )

Softmax
Softmax
X v [ v
Value
sum [T 1] O
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Self attention: Illustrated

X wa Q
X =

X WK K
X =

X WV Vv

Images from https://jalammar.github.io/illustrated-transformer/

softmax(

KT
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Self attention
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A TXd matrix X
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1.
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Self attention

Given:
e ATXd matrix X

° Th ree dx pa rameter matrices Ca||_e__d_]_/1/__(fq_)__](]/__(_l_c_)__l_/]/__(_v_)_ _______________ Called the “query” in
the original paper

XW(q)|{XW(kL)I ______________________________ Called the “key” in

the original paper

1. Compute the TXT matrix A =

2. Return softmax(4)XW ™)



Self attention

Given:

A TXd matrix X

* Three dX % parameter matrices called W@, w ) 1 @)

1.

2.

Compute the TXT matrix A =

Return softmax(A)

Xw @)

Called the “query” in

N 0 g
the original paper

Called the “key” in

¥ 0 g
the original paper

Called the “value” in
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Self attention

Given:
e ATXd matrix X

* Three dX % parameter matrices called W@, w ) 1 @)

Called the “query” in
the original paper

1. Compute the TXT matrix A =

2. Return softmax(AYXW P).------

Called the “key” in
the original paper

Called the “value” in
the original paper

__________________________

Normalized row wise
eXp(Aij)
Yk exp(4x)

SOftmaX(A)ij =




Self attention

Given:

1.

2.

A TXd matrix X

Compute the TXT matrix A =

Return softmax (AR ------------ovrrsssmnnnnc oo

TXT Txd dx%

Called the “query” in
the original paper

Called the “key” in
the original paper

Called the “value” in
the original paper

. . d o d . .
The final result isa T X - matrix, i.e., one - dimensional vector per token
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,

based solely on attention mechanisms, dispensing with recurrence and convolutions
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Details of the model

1. Tokenization

2. Position embeddings
3. Encoders, decoders and encoder-decoders
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Tokenization and the vocabulary

How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

Several options possible:

Output (labels, a sequence of words) *  Each character is a token

I S * Each word is a token

— How do we define what a “word” is?
The rest of the model

5 — What about languages that are not English?
A Txd matrix |  Whitespace tokenization
1 — What could be the problems with this?
Embedding | * Subword tokenization
The, fat, cat, s:t, on, the, mat | — Words are broken into segments
4 — Example:
Tokenizer e figs = fig, s
T .

management — man, age, ment
The fat cat sat on the mat

— Segments are discovered from dataset statistics

using a technigue called byte-pair encoding
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Tokenization and the vocabulary

How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

Several options possible:

Output (labels, a sequence of words) *  Each character is a token

1  Each word is a token
| — How do we define what a “word” is?
The rest of the model .
5 — What about languages that are not English?
A Txd matrix * Whitespace tokenization
1 — What could be the problems with this?
Embedding | «  Subword tokenization
' — Words are broken into segments
The, fat, cat, sat, on, the, mat |
4 — Example: The most common
Tokenizer  figs - fig, s approach today
.............................. .

* management = man, age, ment
The fat cat sat on the mat

— Segments are discovered from dataset statistics

using a technigue called byte-pair encoding
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Details of the model

v’ Tokenization

2. Position embeddings
3. Encoders, decoders and encoder-decoders
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Position embeddings

Input Thinking Machines
Self attention is symmetric with respect to the
Embedding x x [T position.
Queries q1 Eljj q2 Eljj
Keys k2 . .
If the order of the words were reversed, this will
Values vi [T v. [T not change the resulting vectors
Score qi ® = qir ® K2 = . .
This could be a problem if we need to encode
Divide by 8 ( Vdj ) sequences
Softmax
Softmax
X " E]:I:’ V2
Value
sum [T 1] - L1
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Position embeddings

Input Thinking Machines
Self attention is symmetric with respect to the
Embedding x [T x [T position.
Queries q [T q: [T
Keys k2 . .
If the order of the words were reversed, this will
Values vi [T v. [T not change the resulting vectors
Score qi ® = qir ® K2 = . .
This could be a problem if we need to encode
Divide by 8 ( Vdj ) sequences
Softmax
The answer: The input embeddings should
Softmax : 3 : :
< v [T . contain position information
Value
sum [T 1] - L1
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Position information into embeddings

the cat saw the rat

The goal: To design a scheme such that input embeddings contain position information

91



Position information into embeddings

i

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence
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Position information into embeddings

n the cat

saw the rat

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence
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Position information into embeddings

? the cat rat
Token embeddings Position embeddings
These embeddings are based on the tokens These embeddings are based on the
only. They do not include any information position only. They do not include any

about where it occurs in the sequence information about what the token is
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Position information into embeddings

g the
+I

Input to the transformer
network is a sum of
these two embeddings

Token embeddings Position embeddings
These embeddings are based on the tokens These embeddings are based on the
only. They do not include any information position only. They do not include any

about where it occurs in the sequence information about what the token is
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Position embeddings

We want a vector that represents integers. Many
different possibilities
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Position embeddings

We want a vector that represents integers. Many
different possibilities

0 100

(=

0.75

The original transformer paper used

t
PE(t, 2i) = sin <_21>
Nd
_ t
PE(t,2i + 1) = cos <_21>
Nd

N

0.50

w

0.25

'S

0.00

Token Position
v

o

-0.25

~

-0.50

@

-0.75

w

|

0 10 20 30 40 50
Embedding Dimension
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Position embeddings

We want a vector that represents integers. Many
different possibilities

The original transformer paper used

. . t
—---->PE(t, 2i) = sin <_21> Some

Nd position t e
t =]
PE(t,2i + 1) = cos <—21>
; Na
Even numbered Odd numbered
element of the L element of the
position embedding position embedding
for position t for position t

Images from https://jalammar.github.io/illustrated-transformer/
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Details of the model

v’ Tokenization

v’ Position embeddings
3. Encoders, decoders and encoder-decoders
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Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network

$ FFN: R —

Layer Norm

TXd matrix

Multi-head attention

X
TXd matrix

4 MHA: RT>d

Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

* Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

RTxd * Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

SRTXd
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Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network

$ FFN: R —

Layer Norm

TXd matrix

Multi-head attention

X
TXd matrix

4 MHA: RT>d

Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

* Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

RTxd * Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

SRTXd
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Encoders, decoders and encoder-decoders

TXd matrix .
’ * Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors
Layer Norm
Txd matrix * Decoder: Encode a partial sequence (we do not have
| access to what comes next in the sequence)

Fully connected network
}FEN: RTXD o, jTxd * Encoder-decoder: First encode a sequence, and then

conditioned on the encoding, decode it

Layer Norm
TxXd matrix In the decoder mode, even if we know that the full
sequence can have T tokens, we only see a prefix of
Multi-head attention the sequence. That is, the first k tokens.
$ MHA:RT*4 — RT*d
How can we modify this architecture to
X accommodate this fact?

TXd matrix
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Decoder transformers

In the decoder mode, even if we know that the full

X we Q .
sequence can have T tokens, we only see a prefix of
x - the sequence. That is, the first k tokens.
X K How can we modify this architecture to
s i accommodate this fact?
; - y Answer: Modify the self-attention

softmax( )
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Decoder transformers

In the decoder mode, even if we know that the full

X we Q .
sequence can have T tokens, we only see a prefix of
x - the sequence. That is, the first k tokens.
X How can we modify this architecture to
s i accommodate this fact?
y - y Answer: Modify the self-attention
B - - B In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
Q KT affect a certain token

softmax( )
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Decoder transformers

In the decoder mode, even if we know that the full

X we Q .
sequence can have T tokens, we only see a prefix of
x - the sequence. That is, the first k tokens.
X How can we modify this architecture to
s i accommodate this fact?
y - y Answer: Modify the self-attention
B - - B In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
Q (T ’ affect a certain token
% For any token that comes after , mask future
softmax .
positions before the softmax step.
Vax

That is, set those values to —oo

= What happens to the corresponding softmaxes?
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Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network
$ FEN: RTXE — RT>d

Layer Norm

TXd matrix

Multi-head attention
$ MHA: R4 — RT*d

X
TXd matrix

Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

The encoder-decoder mode has two transformer stacks.

Ll A
Encoder :> :;Decoder
transformer stack transformer stack

1 1
| |
T 1
1 1
1 1
1 1
A
1 1y
vy 1\
© .
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Encoders, decoders and encoder-decoders

Txd matrix The encoder-decoder mode has two transformer stacks.
4 e
Layer Norm | | | | | | | I :. | "‘ |
TXxd matrix Encoder j‘> . iDecoder
| transformer stack transformer stack

Fully connected network
fFFN:s}{TXd_)ERTXd | | | | | | | Il| II|

What we want: The decoder outputbsh“ould depend on
Layer Norm the tokens of the encoder

TXd matrix

Multi-head attention
$ MHA: R4 — RT*d

X
TXd matrix
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Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network
$ FEN: RTXE — RT>d

Layer Norm

TXd matrix

Multi-head attention
$ MHA: R4 — RT*d

X
TXd matrix

The encoder-decoder mode has two transformer stacks.

1 1

1 1

1 1
1 1
1 1
1 1
1 1
1

Encoder j‘> . iDecoder
transformer stack transformer stack

1 1
| |
T 1
1 1
1 1
1 |
R S |
[ (W]

What we want: The decoder outputbsh“ould depend on
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
Keys and values come from the encoder output
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Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network

$ FFN: R —

Layer Norm

TXd matrix

Multi-head attention

X
TXd matrix

4 MHA: RT>d

The encoder-decoder mode has two transformer stacks.

1 1

1 1

1 1
1 1
1 1
1 1
1 1
1

Encoder j‘> . iDecoder
transformer stack transformer stack

e [TTTTT1 T

What we want: The decoder outputbsh“ould depend on
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
RT*d Keys and values come from the encoder output
Few different interpretations of this in the literature
Either replace the MHA, or add a second MHA layer
after the existing one

Adds more layer norms
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Outline

The challenge of modeling sequences

e The transformer architecture
— The big picture

 Details and fine print

 The impact of transformers
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Impact of transformer models

The biggest state-of-the-art increase in NLP research in the last decade is from these models

— NLP research = BERTology?
— NLP research = Transformer-powered LLMs?
— Default toolset for NLP research and products today

* More mainstream adoption of human language technology

Growing use in computer vision as well
— Vision Transformers are comparable/better than CNN models

Transformers power...
— ..search and translation engines
— ...language models
— ...products like Github Copilot that convert textual description to code
— ..the NLP part of systems like DALL-E that create images based on prompts



Language Modeling: 2018-today

The goal: Recursively keep generating the next word in text given words so far

Improving Language Understanding

by Generative Pre-Training GPT (2018), 117 million
parameters

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAl OpenAl OpenAl OpenAl
alec@openai.com karthikn@openai.com tim@openai.com ilyasu@openai.com

Language Models are Unsupervised Multitask Learners

GPT-2 (2019), 1.5 billion
parameters

Alec Radford *' Jeffrey Wu "' Rewon Child' David Luan' Dario Amodei ”' Ilya Sutskever **'

Language Models are Few-Shot Learners

GPT-3 (2020), 175 billion
parameters
NeurlPS 2020 best paper

Tom B. Brown" Benjamin Mann* Nick Ryder* Melanie Subbiah*

Tawrad Wanlan' Duafulla Nhawiwal A wwrind Naalalrantan Deanas Chuan



The BERT family (2019-today)

* Afamily of models that were trained by masking words in a

BERT: Pre-training of Deep Bidirectional Transformers for sentence and aski ng the transformer model to fill in the
Language Understanding blank

Along the way, it learns what words mean!

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language

{jacobdevlin,mingweichang, kentonl, kristout}@google.com e QOriginal 2019 paper followed by numerous variants like

DistillBERT, RoBERTa-large/base, DeBERTa, multilingual
BERT (mBERT), XLM,...



The BERT family (2019-today)

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl,kristout}@google.com

A family of models that were trained by masking words in a
sentence and asking the transformer model to fill in the
blank

Along the way, it learns what words mean!

Original 2019 paper followed by numerous variants like
DistillBERT, RoBERTa-large/base, DeBERTa, multilingual
BERT (mBERT), XLM,...

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers Olga Kovaleva Anna Rumshisky
Center for Social Data Science Dept. of Computer Science Dept. of Computer Science
University of Copenhagen University of Massachusetts Lowell University of Massachusetts Lowell
arogers@sodas.ku.dk okovalev@cs.uml.edu arum@cs.uml.edu

A good survey of hundreds of papers




Wrapping up

Transformers are a neural network architecture designed to handle sequences
— But operate in parallel over the entire sequence

The architecture has many different building blocks
— Multi-head attention that “mixes” the input tokens
— Fully-connected layers that operate in parallel over the input tokens
— Residual connections all around
— Layer norms all around

Encoders versus decoders versus encoder-decoder blocks

Many details. A clean overview of the entire stack from the ground up is in
Mary Phuong and Marcus Hutter. 2022. Formal Algorithms for Transformers. arXiv:2207.09238 [cs].

Massive impact on the current NLP practice
— All the state-of-the-art NLP models today are built with transformers
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