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Sequences abound in NLP
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Natural question: How do we model sequential inputs and outputs?

More concretely, we need a mechanism that allows us to

1. Capture sequential dependencies between inputs

2. Model uncertainty over sequential outputs



The challenge of modeling sequences

A sequence may be arbitrarily long. We only have a finite number of 
parameters.
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Recurrent neural networks revisited

RNNs consume one input at each time step

To process (i.e., apply forward pass or backward pass) a sequence with n 
elements, this will take 𝑂(𝑛) steps

– Doesn’t seem like a problem. But recall this is for each example
• And we will be training on millions-to-billions of sequences

– This affects the speed of training because we cannot parallelize over the sequence 
elements

Can we have a sequence model that operates on all 𝑛 inputs in parallel?
– That is each forward pass is 𝑂(1) time?
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“The Transformer paper”: NeurIPS 2017

“We propose a new simple network 
architecture, the Transformer, 
based solely on attention 
mechanisms, dispensing with 
recurrence and convolutions 
entirely.”

Focus: machine translation



Transformer architecture: Vaswani et al 2017

Let us unpack this



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence. 



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence. 

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence. 

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

Embedding

A T×𝑑 matrix • A lookup matrix that maps each token to a 𝑑 dimensional vector
• Learned as part of the training process, often the largest single parameter 

matrix in the entire model
• Typically includes a positional embedding added or appended to keep track 

of which token occurs where in the input



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence. 

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

• A lookup matrix that maps each token to a 𝑑 dimensional vector
• Learned as part of the training process, often the largest single parameter 

matrix in the entire model
• Typically includes a positional embedding added or appended to keep track 

of which token occurs where in the inputEmbedding

A T×𝑑 matrix

The rest of the model
The interesting part



BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence. 

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

Embedding

A T×𝑑 matrix

The rest of the model
The interesting part

• A lookup matrix that maps each token to a 𝑑 dimensional vector
• Learned as part of the training process, often the largest single parameter 

matrix in the entire model
• Typically includes a positional embedding added or appended to keep track 

of which token occurs where in the input



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

T: Sequence length
𝑑: Embedding size



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

T: Sequence length
𝑑: Embedding size



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

⋮

T: Sequence length
𝑑: Embedding size



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

T: Sequence length
𝑑: Embedding size



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

A small model (typically linear + softmax) that produces the desired probabilities

T: Sequence length
𝑑: Embedding size



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

A small model (typically linear + softmax) that produces the desired probabilities

Each transformer layer converts a T×𝑑 matrix into a ”transformed” T×𝑑 matrix

Transformer layers are structurally identical, but have their own parameters

Two different types of transformers in the original paper: 
• Encoder: for BERT, etc whose goal is to embed text
• Decoder: for GPT etc whose goal is to generate text
• Minor differences between them

T: Sequence length
𝑑: Embedding size



The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

A small model (typically linear + softmax) that produces the desired probabilities

Each transformer layer converts a T×𝑑 matrix into a ”transformed” T×𝑑 matrix

Transformer layers are structurally identical, but have their own parameters

Two different types of transformers in the original paper: 
• Encoder: for BERT, etc whose goal is to embed text
• Decoder: for GPT etc whose goal is to generate text
• Minor differences between them

T: Sequence length
𝑑: Embedding size



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention A residual connection



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention The “novel” part of the transformer



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention The “novel” part of the transformer

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#
A residual connection



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix

The “novel” part of the transformer

• A standard two layer neural network with GELU, ReLU (or 
sometimes other) activation, applied to each row separately
• Trivially parallelizable over the rows

• Hidden layer can have dimensionality larger than 𝑑	(e.g. 4𝑑)

+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix

The “novel” part of the transformer

• A standard two layer neural network with GELU, ReLU (or 
sometimes other) activation, applied to each row separately
• Trivially parallelizable over the rows

• Hidden layer can have dimensionality larger than 𝑑	(e.g. 4𝑑)

• Normalizes each column of the input matrix so that the 
elements have zero mean and unit variance

• Leads to more stable optimization

+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#



Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix

The “novel” part of the transformer

• A standard two layer neural network with GELU, ReLU (or 
sometimes other) activation, applied to each row separately
• Trivially parallelizable over the rows

• Hidden layer can have dimensionality larger than 𝑑	(e.g. 4𝑑)

• Normalizes each column of the input matrix so that the 
elements have zero mean and unit variance

• Leads to more stable optimization

This is the transformer encoder. The decoder transformer has a bit more 
detail. We will encounter the details later

+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#



𝑋$ = LayerNorm 𝑋 +𝑀𝐻𝐴 𝑋
Result = LayerNorm 𝑋$ + 𝐹𝐹𝑁 𝑋$

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#



𝑋$ = LayerNorm 𝑋 +𝑀𝐻𝐴 𝑋
Result = LayerNorm 𝑋$ + 𝐹𝐹𝑁 𝑋$

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#



Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix



Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&… • ℎ self-attention (SA) networks
• Analogous to channels in a CNN



Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&…

Each produces a matrix of size 𝑇× #
'

• ℎ self-attention (SA) networks
• Analogous to channels in a CNN



Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&…

Each produces a matrix of size 𝑇× #
'

• ℎ self-attention (SA) networks
• Analogous to channels in a CNN

These matrices are simply stacked to 
produce the output



Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&…

Each produces a matrix of size 𝑇× #
'

• ℎ self-attention (SA) networks
• Analogous to channels in a CNN

These matrices are simply stacked to 
produce the output



Self attention: An example

47
Images from https://jalammar.github.io/illustrated-transformer/



Self attention: An example

48
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter 
matrices associated 
with this self 
attention block



Self attention: An example

49
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter 
matrices associated 
with this self 
attention block



Self attention: An example

50
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter 
matrices associated 
with this self 
attention block



Self attention: An example

51
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter 
matrices associated 
with this self 
attention block

For every element of 
the sequence, create 
three vectors that are 
called its query, key 
and value vectors.
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For each word, compute the self attention. 

First compute the dot product of its query 
vector with the key vector of all words in 
the sentence



Self attention: An example
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For each word, compute the self attention. 

Then, normalize



Self attention: An example
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Use the attention probabilities to weigh 
the value vectors to produce the output 
vector for that word



Self attention: Illustrated
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Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI ) HI * +

A
 

2. Return softmax 𝐴 𝑋𝑊(G)
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'
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'
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Recall that the transformer neural network is 
just layer after layer of the transformer block
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“The Transformer paper”: NeurIPS 2017

“We propose a new simple 
network architecture, the 
Transformer, based solely on 
attention mechanisms, dispensing 
with recurrence and convolutions 
entirely.”
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Details of the model

1. Tokenization
2. Position embeddings
3. Encoders, decoders and encoder-decoders
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Tokenization and the vocabulary

Several options possible:
• Each character is a token
• Each word is a token

– How do we define what a “word” is?
– What about languages that are not English?

• Whitespace tokenization
– What could be the problems with this?

• Subword tokenization
– Words are broken into segments
– Example: 

• figs → fig, s
• management → man, age, ment

– Segments are discovered from dataset statistics 
using a technique called byte-pair encoding
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How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

The most common 
approach today



Details of the model

ü Tokenization
2. Position embeddings
3. Encoders, decoders and encoder-decoders
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Position embeddings
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Self attention is symmetric with respect to the 
position.

If the order of the words were reversed, this will 
not change the resulting vectors

This could be a problem if we need to encode 
sequences
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Self attention is symmetric with respect to the 
position.

If the order of the words were reversed, this will 
not change the resulting vectors

This could be a problem if we need to encode 
sequences

The answer: The input embeddings should 
contain position information



Position information into embeddings
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the cat saw the rat

The goal: To design a scheme such that input embeddings contain position information



Position information into embeddings
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the cat saw the

Token embeddings

These embeddings are based on the tokens 
only. They do not include any information 
about where it occurs in the sequence

rat
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Position information into embeddings

95

the0 cat1 saw2 the3

Token embeddings

These embeddings are based on the tokens 
only. They do not include any information 
about where it occurs in the sequence

rat4

Position embeddings

These embeddings are based on the 
position only. They do not include any 
information about what the token is

+ + + + +
Input to the transformer 
network is a sum of 
these two embeddings



Position embeddings 

We want a vector that represents integers. Many 
different possibilities

The original transformer paper used

PE 𝑡, 2𝑖 = sin
𝑡

𝑁
!"
#

PE 𝑡, 2𝑖 + 1 = cos
𝑡

𝑁
!"
#
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Even numbered 
element of the 
position embedding 
for position 𝑡

Odd numbered 
element of the 
position embedding 
for position 𝑡

Some 
position 𝑡

Images from https://jalammar.github.io/illustrated-transformer/



Details of the model

ü Tokenization
ü Position embeddings
3. Encoders, decoders and encoder-decoders
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Encoders, decoders and encoder-decoders
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𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors 
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have 
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then 
conditioned on the encoding, decode it
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𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors 
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have 
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then 
conditioned on the encoding, decode it

In the decoder mode, even if we know that the full 
sequence can have T tokens, we only see a prefix of 
the sequence. That is, the first k tokens.

How can we modify this architecture to 
accommodate this fact?



Decoder transformers
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In the decoder mode, even if we know that the full 
sequence can have T tokens, we only see a prefix of 
the sequence. That is, the first k tokens.

How can we modify this architecture to 
accommodate this fact?

Answer: Modify the self-attention

In the decoder mode, at training time, we need to 
simulate the fact that only the previous tokens can 
affect a certain token

For any token that comes after , mask future 
positions before the softmax step. 

That is, set those values to −∞

What happens to the corresponding softmaxes?
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In the decoder mode, even if we know that the full 
sequence can have T tokens, we only see a prefix of 
the sequence. That is, the first k tokens.

How can we modify this architecture to 
accommodate this fact?

Answer: Modify the self-attention

In the decoder mode, at training time, we need to 
simulate the fact that only the previous tokens can 
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For any token that comes after , mask future 
positions before the softmax step. 

That is, set those values to −∞

What happens to the corresponding softmaxes?
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𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors 
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have 
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then 
conditioned on the encoding, decode it

The encoder-decoder mode has two transformer stacks.

Encoder 
transformer stack

Decoder 
transformer stack
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The encoder-decoder mode has two transformer stacks.

Encoder 
transformer stack

Decoder 
transformer stack

What we want: The decoder output should depend on 
the tokens of the encoder

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#
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The encoder-decoder mode has two transformer stacks.

Encoder 
transformer stack

Decoder 
transformer stack

What we want: The decoder output should depend on 
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
Keys and values come from the encoder output
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The encoder-decoder mode has two transformer stacks.

Encoder 
transformer stack

Decoder 
transformer stack

What we want: The decoder output should depend on 
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
Keys and values come from the encoder output

Few different interpretations of this in the literature
Either replace the MHA, or add a second MHA layer 
after the existing one
Adds more layer norms

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#



Outline

• The challenge of modeling sequences

• The transformer architecture
– The big picture

• Details and fine print

• The impact of transformers
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Impact of transformer models

• The biggest state-of-the-art increase in NLP research in the last decade is from these models
– NLP research = BERTology? 
– NLP research = Transformer-powered LLMs?
– Default toolset for NLP research and products today

• More mainstream adoption of human language technology

• Growing use in computer vision as well
– Vision Transformers are comparable/better than CNN models

• Transformers power…
– …search and translation engines 
– …language models
– …products like Github Copilot that convert textual description to code
– …the NLP part of systems like DALL-E that create images based on prompts



GPT (2018), 117 million 
parameters

Language Modeling: 2018-today

GPT-2 (2019), 1.5 billion 
parameters

GPT-3 (2020), 175 billion 
parameters
NeurIPS 2020 best paper

The goal: Recursively keep generating the next word in text given words so far



The BERT family (2019-today)

• A family of models that were trained by masking words in a 
sentence and asking the transformer model to fill in the 
blank

Along the way, it learns what words mean!

• Original 2019 paper followed by numerous variants like 
DistillBERT, RoBERTa-large/base, DeBERTa, multilingual 
BERT (mBERT), XLM,…



The BERT family (2019-today)

• A family of models that were trained by masking words in a 
sentence and asking the transformer model to fill in the 
blank

Along the way, it learns what words mean!

• Original 2019 paper followed by numerous variants like 
DistillBERT, RoBERTa-large/base, DeBERTa, multilingual 
BERT (mBERT), XLM,…

A good survey of hundreds of papers



Wrapping up

Transformers are a neural network architecture designed to handle sequences
– But operate in parallel over the entire sequence

The architecture has many different building blocks
– Multi-head attention that “mixes” the input tokens
– Fully-connected layers that operate in parallel over the input tokens
– Residual connections all around
– Layer norms all around

Encoders versus decoders versus encoder-decoder blocks

Many details. A clean overview of the entire stack from the ground up is in
Mary Phuong and Marcus Hutter. 2022. Formal Algorithms for Transformers. arXiv:2207.09238 [cs].

Massive impact on the current NLP practice
– All the state-of-the-art NLP models today are built with transformers
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