Transformers

THE
U UNIVERSITY
OF UTAH

Outline

The challenge of modeling sequences

e The transformer architecture
— The big picture

 Details and fine print

 The impact of transformers

Outline

The challenge of modeling sequences

e The transformer architecture
— The big picture

 Details and fine print

* The impact of transformers

Sequences abound in NLP

Salt Lake City

John lives in Salt Lake City

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.

Noun Verb Preposition Noun Noun Noun

B-PER O O B-LOC I-LOC I-LOC

And we can get very creative how we encode complex objects

Example: We can encode parse trees as a sequence of decisions needed to construct the tree

Sequences abound in NLP

Natural question: How do we model sequential inputs and outputs?
More concretely, we need a mechanism that allows us to
1. Capture sequential dependencies between inputs

2 Model uncertalnty over sequent|a| outputs

=AY T A~ _=TT= —_— TN A AR =TT A~ == T~ AR A= AR AT AN T T AR AR

The challenge of modeling sequences
Q0000 - - - - 0000000

A sequence may be arbitrarily long. We only have a finite number of
parameters.

The challenge of modeling sequences
Q0000 - - - - 0000000

A sequence may be arbitrarily long. We only have a finite number of
parameters.

1. How do we model what comes next using only a finite number of parameters?

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

3. Can we build models that can encode the meaning of items in a sequence in parallel?

The challenge of modeling sequences
Q0000 - - - - 0000000

A sequence may be arbitrarily long. We only have a finite number of
parameters.

1. How do we model what comes next using only a finite number of parameters?
v" Markov models

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

X Markov models

3. Can we build models that can encode the meaning of items in a sequence in parallel?

X Markov models

The challenge of modeling sequences
Q0000 - - - - 0000000

A sequence may be arbitrarily long. We only have a finite number of
parameters.

1. How do we model what comes next using only a finite number of parameters?

v Markov models v" Recurrent Neural Networks

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

X Markov models v" Recurrent Neural Networks

3. Can we build models that can encode the meaning of items in a sequence in parallel?

X Markov models X Recurrent Neural Networks

The challenge of modeling sequences
Q0000 - - - - 0000000

A sequence may be arbitrarily long. We only have a finite number of
parameters.

1. How do we model what comes next using only a finite number of parameters?

v Markov models v" Recurrent Neural Networks v" Transformers

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

X Markov models v" Recurrent Neural Networks v" Transformers

3. Can we build models that can encode the meaning of items in a sequence in parallel?

X Markov models X Recurrent Neural Networks v" Transformers

10

Outline

The challenge of modeling sequences

The transformer architecture
— The big picture

Details and fine print

The impact of transformers

11

Recurrent neural networks revisitead

RNNs consume one input at each time step

To process (i.e., apply forward pass or backward pass) a sequence with n

elements, this will take O (n) steps
— Doesn’t seem like a problem. But recall this is for each example
* And we will be training on millions-to-billions of sequences
— This affects the speed of training because we cannot parallelize over the sequence
elements

Can we have a sequence model that operates on all n inputs in parallel?
— That is each forward pass is O(1) time?

12

“The Transformer paper”: NeurlPS 2017

Focus: machine translation

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez" Lukasz Kaiser"
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin® *
illia.polosukhin@gmail.com

“« .
We propose a new simple network e
The dominant sequence transduction models are based on complex recurrent or

architecture, the Transformer,
. convolutional neural networks that include an encoder and a decoder. The best
ba Sed SO I E |y on atte nt|0 N performing models also connect the encoder and decoder through an attention

mechanism. We propose a new simple network architecture, the Transformer,

m ech an |S ms d |Spen S| ng W|th based solely on attention mechanisms, dispensing with recurrence and convolutions
4 entirely. Experiments on two machine translation tasks show these models to

recurrence an d coO nVO| u t | ons be superior in quality while being more parallelizable and requiring significantly

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
. ” to-German translation task, improving over the existing best results, including
e ntl re | y. ancamhlac hv aver 2 RI EIT Oin tha WMT 2014 Enolich-ta.Franch tranclatinn tack

Transformer architecture: Vaswani et al 2017

Output
Probabilities

Multi-Head

Attention
Nx
Nx

Add & Norm Masked

Multi-Head Mutti-Head
Attention Attention

L%) LY)

\ S J N jr—)
Positional) @ Positional
Encoding 'Y Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Let us unpack this

Output (labels, a sequence of words)

i

BERT, RoBERTa, GPT-2, GPT-3, ...

4
The fat cat sat on the mat

Output (labels, a sequence of words)

0

4
The fat cat sat on the mat

Output (labels, a sequence of words)

0

The, fat, cat, sat, on, the, mat
A

Tokenizer

4
The fat cat sat on the mat

Output (labels, a sequence of words)

0

The, fat, cat, sat, on, the, mat *----------

7 tokens in this sequence.

4

Tokenizer

4
The fat cat sat on the mat

Output (labels, a sequence of words)

0

The, fat, cat, sat, on, the, mat +
4

= 7 tokens in this sequence.

Tokenizer

4
The fat cat sat on the mat

More than whitespace splitting to handle unknown/very long words
Common approach: Byte-pair encoding

Output (labels, a sequence of words)

0

A lookup matrix that maps each token to a d dimensional vector

Learned as part of the training process, often the largest single parameter
matrix in the entire model

Typically includes a positional embedding added or appended to keep track
of which token occurs where in the input

7 tokens in this sequence.

A TXd matrix
Embedding e
¢
The, fat, cat, sat, on, the, mat *----------
4
Tokenizer -
i]

The fat cat sat on the mat

More than whitespace splitting to handle unknown/very long words
Common approach: Byte-pair encoding

Output (labels, a sequence of words)

4

The rest of the model

The interesting part

o
A TXd matrix

1

Embedding

A lookup matrix that maps each token to a d dimensional vector

Learned as part of the training process, often the largest single parameter
matrix in the entire model

Typically includes a positional embedding added or appended to keep track
of which token occurs where in the input

¢
The, fat, cat, sat, on, the, mat +
4

7 tokens in this sequence.

Tokenizer

4
The fat cat sat on the mat

More than whitespace splitting to handle unknown/very long words
Common approach: Byte-pair encoding

Output (labels, a sequence of words)

4

The rest of the model

The interesting part

o
A TXd matrix

1

Embedding

A lookup matrix that maps each token to a d dimensional vector

Learned as part of the training process, often the largest single parameter
matrix in the entire model

Typically includes a positional embedding added or appended to keep track
of which token occurs where in the input

¢
The, fat, cat, sat, on, the, mat +
4

7 tokens in this sequence.

Tokenizer

4
The fat cat sat on the mat

More than whitespace splitting to handle unknown/very long words
Common approach: Byte-pair encoding

Output (labels, a sequence of words)

Txd matrix after embedding tokens

Output (labels, a sequence of words)

T

i
TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Output (labels, a sequence of words)

T

t

Transformer Layer

t

TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Output (labels, a sequence of words)

T

Transformer Layer

i

Transformer Layer

t

TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Output (labels, a sequence of words)

T

Transformer Layer

Transformer Layer

i

Transformer Layer

t

TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Output (labels, a sequence of words)

4

A small model (typically linear + softmax) that produces the desired probabilities

Transformer Layer

Transformer Layer

i

Transformer Layer

t

TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Output (labels, a sequence of words)

4

A small model (typically linear + softmax) that produces the desired probabilities

Transformer Layer Iv

Transformer Layer o
T
Transformer Layer |‘

Each transformer layer converts a TXd matrix into a “transformed” TXd matrix

Transformer layers are structurally identical, but have their own parameters

Two different types of transformers in the original paper:

Encoder: for BERT, etc whose goal is to embed text
Decoder: for GPT etc whose goal is to generate text
Minor differences between them

t

TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Output (labels, a sequence of words)

4

A small model (typically linear + softmax) that produces the desired probabilities

Transformer Layer Iv

Transformer Layer o
T
Transformer Layer |‘

Each transformer layer converts a TXd matrix into a “transformed” TXd matrix

Transformer layers are structurally identical, but have their own parameters

Two different types of transformers in the original paper:

Encoder: for BERT, etc whose goal is to embed text
Decoder: for GPT etc whose goal is to generate text
Minor differences between them

t

TXxd matrix after embedding tokens

T: Sequence length
d: Embedding size

Txd matrix

X
Txd matrix

TXd matrix
7)

t
X

TXd matrix

TXd matrix

4

X
TXd matrix

TXd matrix

i
T TXd matrix
Multi-head attention
$ MHA: R4 — RTxd
X

TXd matrix

A residual connection

TXd matrix

n
+ TXxd matrix
Multi-head attention p------------
$ MHA: RT>d - RTxd
X

TXd matrix

The “novel” part of the transformer

TXd matrix

TXd matrix

Fully connected network A residual connection
$ FEN: RTXE — RT>d

TXd matrix

Multi-head attention [esesssssssssssssssss 4 The “novel” part of the transformer

$ MHA:RT*4 — RT*d

X
TXd matrix

TXd matrix

TXd matrix
I * Astandard two layer neural network with GELU, ReLU (or
FuIIy TN | PN N 1 sometlme§ other) actlyatlon, applied to each row separately
* Trivially parallelizable over the rows

4 FFN; RTXa — gTxd e Hidden layer can have dimensionality larger than d (e.g. 4d)

TXxd matrix
Multi-head attention [esesssssssssssssssss 4 The “novel” part of the transformer

$ MHA: R4 — RTxd

X
TXd matrix

TXd matrix

_____ -
-—— rd
- -
- rd

Layer Norm [

Txd matrix .-~

s
'

s
7z
7
'
e

A FEN:RTXE

Layer Norm [*

TXd matrix

4 MHA: RT>d

Multi-head attention &----

Fully connected network [e---------

X
TXd matrix

* Normalizes each column of the input matrix so that the
elements have zero mean and unit variance
* Leads to more stable optimization

* Astandard two layer neural network with GELU, ReLU (or
sometimes other) activation, applied to each row separately
* Trivially parallelizable over the rows
* Hidden layer can have dimensionality larger than d (e.g. 4d)

The “novel” part of the transformer

) * Normalizes each column of the input matrix so that the
Txd matrix X% elements have zero mean and unit variance
e o esmmEmTTTT ot * Leads to more stable optimization
Layer Norm fe-="""""

Txd matrix .-~

s
'

s

I _o** * Astandard two layer neural network with GELU, RelLU (or
sometimes other) activation, applied to each row separately
* Trivially parallelizable over the rows

Fully connected network [e------===-------

A FFN: RTXd — RTxd « Hidden layer can have dimensionality larger than d (e.g. 4d)
Layer Norm |*
TXd matrix
Multi-head attention [sssssssssssssssssss The “novel” part of the transformer

$ MHA:RT*4 — RT*d

X
TXd matrix

This is the transformer encoder. The decoder transformer has a bit more
detail. We will encounter the details later

TXd matrix

"
Layer Norm
f 1 (X):
Txd matrix }(iazslg;2§iﬁoiny1igxx+ multi_head_attention(X))
I X2 = 1a))$r_norm2(X1 + fully_connected(X1))
Fully connected network
$ FEN: RTXE — RT>d
o X; = LayerNorm(X + MHA(X))
Yy Result = LayerNorm(X1 + FFN(Xl))
TXd matrix
Multi-head attention
$ MHA: R4 — RT*d
X

TXd matrix

TXd matrix

"
Layer Norm
f 1 (X):
Txd matrix }(iazslg;2§iﬁoiny1igxx+ multi_head_attention(X))
I X2 = 1a))$r_norm2(X1 + fully_connected(X1))
Fully connected network
$ FEN: RTXE — RT>d
o X; = LayerNorm(X + MHA(X))
Yy Result = LayerNorm(X1 + FFN(Xl))
TXd matrix
Multi-head attention
$ MHA: R4 — RT*d
X

TXd matrix

TXd output matrix

TXd input matrix

Txd output matrix

f

SA,

SA,

SA;,

h self-attention (SA) networks
Analogous to channels in a CNN

TXd input matrix

Txd output matrix

f

SA,

SA,

. . d
Each produces a matrix of size T X -

SA;,

h self-attention (SA) networks
Analogous to channels in a CNN

TXd input matrix

Txd output matrix
4

SA,

SA,

These matrices are simply stacked to
produce the output

. . d
Each produces a matrix of size T X -

SA;,

* h self-attention (SA) networks
* Analogous to channels in a CNN

TXd input matrix

Txd output matrix
4

SA,

SA,

These matrices are simply stacked to
produce the output

. . d
Each produces a matrix of size T X -

SA;,

* h self-attention (SA) networks
* Analogous to channels in a CNN

TXd input matrix

Self attention: An example

Input Thinking

Embedding x| T

Images from https://jalammar.github.io/illustrated-transformer/

Machines

47

Self attention: An example

Input Thinking

Embedding il L]

Images from https://jalammar.github.io/illustrated-transformer/

Machines

WV

Three parameter
matrices associated
with this self
attention block

48

Self attention: An example

Input Thinking
Embedding L
Queries g1 D:D

Images from https://jalammar.github.io/illustrated-transformer/

Machines

wVv

Three parameter
matrices associated
with this self
attention block

49

Self attention: An example

Input Thinking
Embedding L
Queries q1|:|:|:|
Keys T

Images from https://jalammar.github.io/illustrated-transformer/

Machines

WV

Three parameter
matrices associated
with this self
attention block

50

Self attention: An example

Input Thinking
Embedding X
Queries g1 |:|:|:|
For every element of
the sequence, create
three vectors that are
called its query, key Keys <« I
and value vectors.
Values vil T 1]

Images from https://jalammar.github.io/illustrated-transformer/

Machines

vo[L 1]

WV

Three parameter
matrices associated
with this self
attention block

51

Self attention: An example

Input

Embedding
Queries
Keys
Values

Score

X1

V1

Thinking

g1 * Ki=

Images from https://jalammar.github.io/illustrated-transformer/

For each word, compute the self attention.

First compute the dot product of its query
vector with the key vector of all words in
the sentence

Machines
X2
Q2
K2
V2
qi* ke =

52

For each word, compute the self attention.

Self attention: An example

Then, normalize

Input Thinking Machines
Embedding X1 X2

Queries q1 qz

Keys K1 K2

Values V1 V2

Score g ® ki = gi* ke =
Divide by 8 (v/dj)

Softmax

53
Images from https://jalammar.github.io/illustrated-transformer/

Use the attention probabilities to weigh

Se |f atte nt|o N: An exam p | e the value vectors to produce the output

vector for that word

Input Thinking Machines
Embedding X1 |:|:|:|:| X2 \:|:|:|:|
Queries q1 ED:‘ q2 ED:‘
Keys [[T
Values Vi Djj V2 Djj
Score gi e ki= gi e ko =

Divide by 8 (Vd;)

Softmax
Softmax
X v [v
Value
sum [T 1] O

54
Images from https://jalammar.github.io/illustrated-transformer/

Self attention: Illustrated

X wa Q
X =

X WK K
X =

X WV Vv

Images from https://jalammar.github.io/illustrated-transformer/

softmax(

KT

55

Self attention

Given:
e ATXd matrix X

* Three dX % parameter matrices called W@, w) @)

Self attention

Given:
e ATXd matrix X

e Three dX % parameter matrices called W@, w) 1 @)

xw @ (Xw(k))T
Vd

1. Compute the TXT matrix A =

Self attention

Given:
e ATXd matrix X

e Three dx 2 — parameter matrices caII_e__d_l_/V__(?_)__W__(_’_‘_)__[/l/__(_”_)_ ________________ Called the “query” in
the original paper

1. Compute the TXT matrix A =

Self attention

Given:

A TXd matrix X

e Three dX % parameter matrices called W@, w) 1 @)

1.

Compute the TXT matrix A =

Xw(CI)M;m
Vd

Called the “query” in

| the original paper

Called the “key” in

| the original paper

Self attention

Given:
e ATXd matrix X

° Th ree dx pa rameter matrices Ca||_e__d_]_/1/__(fq_)__](]/__(_l_c_)__l_/]/__(_v_)_ _______________ Called the “query” in
the original paper

XW(q)|{XW(kL)I ______________________________ Called the “key” in

the original paper

1. Compute the TXT matrix A =

2. Return softmax(4)XW ™)

Self attention

Given:

A TXd matrix X

* Three dX % parameter matrices called W@, w) 1 @)

1.

2.

Compute the TXT matrix A =

Return softmax(A)

Xw @)

Called the “query” in

N 0 g
the original paper

Called the “key” in

¥ 0 g
the original paper

Called the “value” in

¥ 0 g
the original paper

Self attention

Given:
e ATXd matrix X

* Three dX % parameter matrices called W@, w) 1 @)

Called the “query” in
the original paper

1. Compute the TXT matrix A =

2. Return softmax(AYXW P).------

Called the “key” in
the original paper

Called the “value” in
the original paper

Normalized row wise
eXp(Aij)
Yk exp(4x)

SOftmaX(A)ij =

Self attention

Given:

1.

2.

A TXd matrix X

Compute the TXT matrix A =

Return softmax (AR ------------ovrrsssmnnnnc oo

TXT Txd dx%

Called the “query” in
the original paper

Called the “key” in
the original paper

Called the “value” in
the original paper

. . d o d . .
The final result isa T X - matrix, i.e., one - dimensional vector per token

Recall that the transformer neural network is
just layer after layer of the transformer block

Recall that the transformer neural network is
just layer after layer of the transformer block

Embed

T
Input text

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

MHA

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

MHA

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

LN

LN

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

LN

LN

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

LN

LN

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

LN

LN

LN

LN

LN

FFN

LN

LN

FFN

LN

MHA

Embed

T

Input text

LN

FFN

LN

MHA

Classifier over
final embeddings

LN

LN

A

LN

LN

Output (labels, a sequence of words)

BERT, RoBERTa, GPT-2, GPT-3, ...
Some model

t
The fat cat sat on the mat

Output (labels, a sequence of words)

BERT, RoBERTa, GPT-2, GPT-3, ...

Some model

The fat cat sat on the mat

»I

Output (labels, a sequence of words)

S I I

The rest of the model

A TXd matrix

Embedding

The, fat, cat, sat, on, the, mat

Tokenizer

|
-»I

The fat cat sat on the mat

Output (labels, a sequence of words) Output (labels, a sequence of words) Output (labels, a sequence of words)

A small model (typically linear) that produces the desired probabilities

‘
Transformer Layer ‘

‘ Transformer Layer |

Transformer Layer

A TXd matrix

BERT, RoBERTa, GPT-2, GPT-3, ...
Some model ‘ Embedding |
| \

t

The, fat, cat, sat, on, the, mat

| Txd matrix after embedding tokens
. L — _ .

The fat cat sat on the mat The fat cat sat on the mat

Output (labels, a sequence of words)

Output (labels, a sequence of words) Output (labels, a sequence of words)

A small model (typically linear) that produces the desired probabilities

‘
Transformer Layer [

\ A Txd matrix
BERT, RoBERTa, GPT-2, GPT-3,

“ ‘ ;
Some model _— ‘ Embedding | ‘ Transformer Layer
| f \

The, fat, cat, sat, on, the, mat Transformer Layer

| | Txd matrix after embedding tokens
f — S = ——

The fat cat sat on the mat

The fat cat sat on the mat

Txd matrix

Txd matrix

Txd matrix

Multi-head attention

) T MHA: RT>d — RTxd

X
Txd matrix

Output (labels, a sequence of words) Output (labels, a sequence of words) Output (labels, a sequence of words)

. I S o A small model (typically linear) that produces the desired probabilities

‘
Transformer Layer [

‘ Transformer Layer |

Transformer Layer

\ A Txd matrix

BERT, RoBERTa, GPT-2, GPT-3,

Some model ‘ Embedding
| \
t

The, fat, cat, sat, on, the, mat

| Txd matrix after embedding tokens
. L — _ -

The fat cat sat on the mat

The fat cat sat on the mat

Txd matrix

Txd output matrix

Txd matrix

Txd matrix SHA, SHA, SHA;,

Multi-head attention

) T MHA: RT>d - RT¥4

X
Txd matrix

Txd input matrix

Output (labels, a sequence of words) Output (labels, a sequence of words) Output (labels, a sequence of words)

S i I - I A small model (typically linear) that produces the desired probabilities

: i
Transformer Layer |

S ‘ - \ | Transformer Layer |
ome model Embedding | |
| \
t

The, fat, cat, sat, on, the, mat Transformer Layer

| Txd matrix after embedding tokens
. L — _ .

The fat cat sat on the mat

\ A Txd matrix

BERT, RoBERTa, GPT-2, GPT-3, ...

The fat cat sat on the mat

X wa Q
Txd matrix Txd output matrix EEEE - i
1,
Txd matrix i
mm- -
Q T

Txd matrix SHA, SHA, SHA;,

softmax(EB}) HE)
Vi,

Multi-head attention

- HE
X

Txd matrix Txd input matrix

“The Transformer paper”: NeurlPS 2017

Focus: machine translation

“We propose a hew Sim ple

network architecture, the
Transformer, based solely on
attention mechanisms, dispensing
with recurrence and convolutions
entirely.”

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez" ELukasz Kaiser”
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin®
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,

based solely on attention mechanisms, dispensing with recurrence and convolutions
entrely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ancamhlac hu aver 2 RT ETT Oin the WMT 2MN14 Enolichota_Franch tranclatinn taclk

Outline

The challenge of modeling sequences

The transformer architecture
— The big picture

Details and fine print

The impact of transformers

84

Details of the model

1. Tokenization

2. Position embeddings
3. Encoders, decoders and encoder-decoders

85

Tokenization and the vocabulary

How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

Several options possible:

Output (labels, a sequence of words) * Each character is a token

I S * Each word is a token

— How do we define what a “word” is?
The rest of the model

5 — What about languages that are not English?
A Txd matrix | Whitespace tokenization
1 — What could be the problems with this?
Embedding | * Subword tokenization
The, fat, cat, s:t, on, the, mat | — Words are broken into segments
4 — Example:
Tokenizer e figs = fig, s
T .

management — man, age, ment
The fat cat sat on the mat

— Segments are discovered from dataset statistics

using a technigue called byte-pair encoding

86

Tokenization and the vocabulary

How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

Several options possible:

Output (labels, a sequence of words) * Each character is a token

1 Each word is a token
| — How do we define what a “word” is?
The rest of the model .
5 — What about languages that are not English?
A Txd matrix * Whitespace tokenization
1 — What could be the problems with this?
Embedding | « Subword tokenization
' — Words are broken into segments
The, fat, cat, sat, on, the, mat |
4 — Example: The most common
Tokenizer figs - fig, s approach today
.............................. .

* management = man, age, ment
The fat cat sat on the mat

— Segments are discovered from dataset statistics

using a technigue called byte-pair encoding

87

Details of the model

v’ Tokenization

2. Position embeddings
3. Encoders, decoders and encoder-decoders

88

Position embeddings

Input Thinking Machines
Self attention is symmetric with respect to the
Embedding x x [T position.
Queries q1 Eljj q2 Eljj
Keys k2 . .
If the order of the words were reversed, this will
Values vi [T v. [T not change the resulting vectors
Score qi ® = qir ® K2 = . .
This could be a problem if we need to encode
Divide by 8 (Vdj) sequences
Softmax
Softmax
X " E]:I:’ V2
Value
sum [T 1] - L1

89
Images from https://jalammar.github.io/illustrated-transformer/

Position embeddings

Input Thinking Machines
Self attention is symmetric with respect to the
Embedding x [T x [T position.
Queries q [T q: [T
Keys k2 . .
If the order of the words were reversed, this will
Values vi [T v. [T not change the resulting vectors
Score qi ® = qir ® K2 = . .
This could be a problem if we need to encode
Divide by 8 (Vdj) sequences
Softmax
The answer: The input embeddings should
Softmax : 3 : :
< v [T . contain position information
Value
sum [T 1] - L1

90
Images from https://jalammar.github.io/illustrated-transformer/

Position information into embeddings

the cat saw the rat

The goal: To design a scheme such that input embeddings contain position information

91

Position information into embeddings

i

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence

92

Position information into embeddings

n the cat

saw the rat

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence

93

Position information into embeddings

? the cat rat
Token embeddings Position embeddings
These embeddings are based on the tokens These embeddings are based on the
only. They do not include any information position only. They do not include any

about where it occurs in the sequence information about what the token is

94

Position information into embeddings

g the
+I

Input to the transformer
network is a sum of
these two embeddings

Token embeddings Position embeddings
These embeddings are based on the tokens These embeddings are based on the
only. They do not include any information position only. They do not include any

about where it occurs in the sequence information about what the token is

95

Position embeddings

We want a vector that represents integers. Many
different possibilities

96

Position embeddings

We want a vector that represents integers. Many
different possibilities

0 100

(=

0.75

The original transformer paper used

t
PE(t, 2i) = sin <_21>
Nd
_ t
PE(t,2i + 1) = cos <_21>
Nd

N

0.50

w

0.25

'S

0.00

Token Position
v

o

-0.25

~

-0.50

@

-0.75

w

|

0 10 20 30 40 50
Embedding Dimension

97
Images from https://jalammar.github.io/illustrated-transformer/

Position embeddings

We want a vector that represents integers. Many
different possibilities

The original transformer paper used

. . t
—---->PE(t, 2i) = sin <_21> Some

Nd position t e
t =]
PE(t,2i + 1) = cos <—21>
; Na
Even numbered Odd numbered
element of the L element of the
position embedding position embedding
for position t for position t

Images from https://jalammar.github.io/illustrated-transformer/

98

Details of the model

v’ Tokenization

v’ Position embeddings
3. Encoders, decoders and encoder-decoders

99

Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network

$ FFN: R —

Layer Norm

TXd matrix

Multi-head attention

X
TXd matrix

4 MHA: RT>d

Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

* Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

RTxd * Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

SRTXd

100

Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network

$ FFN: R —

Layer Norm

TXd matrix

Multi-head attention

X
TXd matrix

4 MHA: RT>d

Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

* Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

RTxd * Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

SRTXd

101

Encoders, decoders and encoder-decoders

TXd matrix .
’ * Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors
Layer Norm
Txd matrix * Decoder: Encode a partial sequence (we do not have
| access to what comes next in the sequence)

Fully connected network
}FEN: RTXD o, jTxd * Encoder-decoder: First encode a sequence, and then

conditioned on the encoding, decode it

Layer Norm
TxXd matrix In the decoder mode, even if we know that the full
sequence can have T tokens, we only see a prefix of
Multi-head attention the sequence. That is, the first k tokens.
$ MHA:RT*4 — RT*d
How can we modify this architecture to
X accommodate this fact?

TXd matrix

102

Decoder transformers

In the decoder mode, even if we know that the full

X we Q .
sequence can have T tokens, we only see a prefix of
x - the sequence. That is, the first k tokens.
X K How can we modify this architecture to
s i accommodate this fact?
; - y Answer: Modify the self-attention

softmax()

103

Decoder transformers

In the decoder mode, even if we know that the full

X we Q .
sequence can have T tokens, we only see a prefix of
x - the sequence. That is, the first k tokens.
X How can we modify this architecture to
s i accommodate this fact?
y - y Answer: Modify the self-attention
B - - B In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
Q KT affect a certain token

softmax()

104

Decoder transformers

In the decoder mode, even if we know that the full

X we Q .
sequence can have T tokens, we only see a prefix of
x - the sequence. That is, the first k tokens.
X How can we modify this architecture to
s i accommodate this fact?
y - y Answer: Modify the self-attention
B - - B In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
Q (T ’ affect a certain token
% For any token that comes after , mask future
softmax .
positions before the softmax step.
Vax

That is, set those values to —oo

= What happens to the corresponding softmaxes?

105

Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network
$ FEN: RTXE — RT>d

Layer Norm

TXd matrix

Multi-head attention
$ MHA: R4 — RT*d

X
TXd matrix

Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

The encoder-decoder mode has two transformer stacks.

Ll A
Encoder :> :;Decoder
transformer stack transformer stack

1 1
| |
T 1
1 1
1 1
1 1
A
1 1y
vy 1\
© .

106

Encoders, decoders and encoder-decoders

Txd matrix The encoder-decoder mode has two transformer stacks.
4 e
Layer Norm | | | | | | | I :. | "‘ |
TXxd matrix Encoder j‘> . iDecoder
| transformer stack transformer stack

Fully connected network
fFFN:s}{TXd_)ERTXd | | | | | | | Il| II|

What we want: The decoder outputbsh“ould depend on
Layer Norm the tokens of the encoder

TXd matrix

Multi-head attention
$ MHA: R4 — RT*d

X
TXd matrix

107

Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network
$ FEN: RTXE — RT>d

Layer Norm

TXd matrix

Multi-head attention
$ MHA: R4 — RT*d

X
TXd matrix

The encoder-decoder mode has two transformer stacks.

1 1

1 1

1 1
1 1
1 1
1 1
1 1
1

Encoder j‘> . iDecoder
transformer stack transformer stack

1 1
| |
T 1
1 1
1 1
1 |
R S |
[(W]

What we want: The decoder outputbsh“ould depend on
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
Keys and values come from the encoder output

108

Encoders, decoders and encoder-decoders

TXd matrix
A

Layer Norm

TXd matrix

Fully connected network

$ FFN: R —

Layer Norm

TXd matrix

Multi-head attention

X
TXd matrix

4 MHA: RT>d

The encoder-decoder mode has two transformer stacks.

1 1

1 1

1 1
1 1
1 1
1 1
1 1
1

Encoder j‘> . iDecoder
transformer stack transformer stack

e [TTTTT1 T

What we want: The decoder outputbsh“ould depend on
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
RT*d Keys and values come from the encoder output
Few different interpretations of this in the literature
Either replace the MHA, or add a second MHA layer
after the existing one

Adds more layer norms
109

Outline

The challenge of modeling sequences

e The transformer architecture
— The big picture

 Details and fine print

 The impact of transformers

110

Impact of transformer models

The biggest state-of-the-art increase in NLP research in the last decade is from these models

— NLP research = BERTology?
— NLP research = Transformer-powered LLMs?
— Default toolset for NLP research and products today

* More mainstream adoption of human language technology

Growing use in computer vision as well
— Vision Transformers are comparable/better than CNN models

Transformers power...
— ..search and translation engines
— ...language models
— ...products like Github Copilot that convert textual description to code
— ..the NLP part of systems like DALL-E that create images based on prompts

Language Modeling: 2018-today

The goal: Recursively keep generating the next word in text given words so far

Improving Language Understanding

by Generative Pre-Training GPT (2018), 117 million
parameters

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAl OpenAl OpenAl OpenAl
alec@openai.com karthikn@openai.com tim@openai.com ilyasu@openai.com

Language Models are Unsupervised Multitask Learners

GPT-2 (2019), 1.5 billion
parameters

Alec Radford *' Jeffrey Wu "' Rewon Child' David Luan' Dario Amodei ”' Ilya Sutskever **'

Language Models are Few-Shot Learners

GPT-3 (2020), 175 billion
parameters
NeurlPS 2020 best paper

Tom B. Brown" Benjamin Mann* Nick Ryder* Melanie Subbiah*

Tawrad Wanlan' Duafulla Nhawiwal A wwrind Naalalrantan Deanas Chuan

The BERT family (2019-today)

* Afamily of models that were trained by masking words in a

BERT: Pre-training of Deep Bidirectional Transformers for sentence and aski ng the transformer model to fill in the
Language Understanding blank

Along the way, it learns what words mean!

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language

{jacobdevlin,mingweichang, kentonl, kristout}@google.com e QOriginal 2019 paper followed by numerous variants like

DistillBERT, RoBERTa-large/base, DeBERTa, multilingual
BERT (mBERT), XLM,...

The BERT family (2019-today)

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl,kristout}@google.com

A family of models that were trained by masking words in a
sentence and asking the transformer model to fill in the
blank

Along the way, it learns what words mean!

Original 2019 paper followed by numerous variants like
DistillBERT, RoBERTa-large/base, DeBERTa, multilingual
BERT (mBERT), XLM,...

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers Olga Kovaleva Anna Rumshisky
Center for Social Data Science Dept. of Computer Science Dept. of Computer Science
University of Copenhagen University of Massachusetts Lowell University of Massachusetts Lowell
arogers@sodas.ku.dk okovalev@cs.uml.edu arum@cs.uml.edu

A good survey of hundreds of papers

Wrapping up

Transformers are a neural network architecture designed to handle sequences
— But operate in parallel over the entire sequence

The architecture has many different building blocks
— Multi-head attention that “mixes” the input tokens
— Fully-connected layers that operate in parallel over the input tokens
— Residual connections all around
— Layer norms all around

Encoders versus decoders versus encoder-decoder blocks

Many details. A clean overview of the entire stack from the ground up is in
Mary Phuong and Marcus Hutter. 2022. Formal Algorithms for Transformers. arXiv:2207.09238 [cs].

Massive impact on the current NLP practice
— All the state-of-the-art NLP models today are built with transformers

115

