
Transformers

1

Outline

• The challenge of modeling sequences

• The transformer architecture
– The big picture

• Details and fine print

• The impact of transformers

2

Outline

• The challenge of modeling sequences

• The transformer architecture
– The big picture

• Details and fine print

• The impact of transformers

3

Sequences abound in NLP

4

S a l t L a k e C i t y

John lives in Salt Lake City

And we can get very creative how we encode complex objects

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.

Noun Verb Preposition Noun Noun Noun

Example: We can encode parse trees as a sequence of decisions needed to construct the tree

B-PER O O B-LOC I-LOC I-LOC

Sequences abound in NLP

5

S a l t L a k e C i t y

John lives in Salt Lake City

And we can get very creative how we encode complex objects

John lives in Salt Lake City. He enjoys hiking with his dog. His cat hates hiking.

Noun Verb Preposition Noun Noun Noun

Example: We can encode parse trees as a sequence of decisions needed to construct the tree

B-PER O O B-LOC I-LOC I-LOC

Natural question: How do we model sequential inputs and outputs?

More concretely, we need a mechanism that allows us to

1. Capture sequential dependencies between inputs

2. Model uncertainty over sequential outputs

The challenge of modeling sequences

A sequence may be arbitrarily long. We only have a finite number of
parameters.

6

?

The challenge of modeling sequences

A sequence may be arbitrarily long. We only have a finite number of
parameters.
1. How do we model what comes next using only a finite number of parameters?

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

3. Can we build models that can encode the meaning of items in a sequence in parallel?

7

?

The challenge of modeling sequences

A sequence may be arbitrarily long. We only have a finite number of
parameters.
1. How do we model what comes next using only a finite number of parameters?

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

3. Can we build models that can encode the meaning of items in a sequence in parallel?

8

?

ü Markov models

X Markov models

X Markov models

The challenge of modeling sequences

A sequence may be arbitrarily long. We only have a finite number of
parameters.
1. How do we model what comes next using only a finite number of parameters?

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

3. Can we build models that can encode the meaning of items in a sequence in parallel?

9

?

ü Recurrent Neural Networks

ü Recurrent Neural Networks

X Recurrent Neural Networks

ü Markov models

X Markov models

X Markov models

The challenge of modeling sequences

A sequence may be arbitrarily long. We only have a finite number of
parameters.
1. How do we model what comes next using only a finite number of parameters?

2. How do we build “expressive enough” models without cutting off the history at an arbitrary
point (i.e. a Markov assumption)?

3. Can we build models that can encode the meaning of items in a sequence in parallel?

10

?

ü Transformers

ü Transformers

ü Transformers

ü Recurrent Neural Networks

ü Recurrent Neural Networks

X Recurrent Neural Networks

ü Markov models

X Markov models

X Markov models

Outline

• The challenge of modeling sequences

• The transformer architecture
– The big picture

• Details and fine print

• The impact of transformers

11

Recurrent neural networks revisited

RNNs consume one input at each time step

To process (i.e., apply forward pass or backward pass) a sequence with n
elements, this will take 𝑂(𝑛) steps

– Doesn’t seem like a problem. But recall this is for each example
• And we will be training on millions-to-billions of sequences

– This affects the speed of training because we cannot parallelize over the sequence
elements

Can we have a sequence model that operates on all 𝑛 inputs in parallel?
– That is each forward pass is 𝑂(1) time?

12

“The Transformer paper”: NeurIPS 2017

“We propose a new simple network
architecture, the Transformer,
based solely on attention
mechanisms, dispensing with
recurrence and convolutions
entirely.”

Focus: machine translation

Transformer architecture: Vaswani et al 2017

Let us unpack this

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence.

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence.

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence.

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

Embedding

A T×𝑑 matrix • A lookup matrix that maps each token to a 𝑑 dimensional vector
• Learned as part of the training process, often the largest single parameter

matrix in the entire model
• Typically includes a positional embedding added or appended to keep track

of which token occurs where in the input

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence.

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

• A lookup matrix that maps each token to a 𝑑 dimensional vector
• Learned as part of the training process, often the largest single parameter

matrix in the entire model
• Typically includes a positional embedding added or appended to keep track

of which token occurs where in the inputEmbedding

A T×𝑑 matrix

The rest of the model
The interesting part

BERT, RoBERTa, GPT-2, GPT-3, …

The fat cat sat on the mat

Output (labels, a sequence of words)

Tokenizer

The, fat, cat, sat, on, the, mat 𝑇 = 7 tokens in this sequence.

• More than whitespace splitting to handle unknown/very long words
• Common approach: Byte-pair encoding

Embedding

A T×𝑑 matrix

The rest of the model
The interesting part

• A lookup matrix that maps each token to a 𝑑 dimensional vector
• Learned as part of the training process, often the largest single parameter

matrix in the entire model
• Typically includes a positional embedding added or appended to keep track

of which token occurs where in the input

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

T: Sequence length
𝑑: Embedding size

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

T: Sequence length
𝑑: Embedding size

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

⋮

T: Sequence length
𝑑: Embedding size

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

T: Sequence length
𝑑: Embedding size

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

A small model (typically linear + softmax) that produces the desired probabilities

T: Sequence length
𝑑: Embedding size

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

A small model (typically linear + softmax) that produces the desired probabilities

Each transformer layer converts a T×𝑑 matrix into a ”transformed” T×𝑑 matrix

Transformer layers are structurally identical, but have their own parameters

Two different types of transformers in the original paper:
• Encoder: for BERT, etc whose goal is to embed text
• Decoder: for GPT etc whose goal is to generate text
• Minor differences between them

T: Sequence length
𝑑: Embedding size

The rest of the model

Output (labels, a sequence of words)

T×𝑑 matrix after embedding tokens

Transformer Layer

Transformer Layer

Transformer Layer

⋮

A small model (typically linear + softmax) that produces the desired probabilities

Each transformer layer converts a T×𝑑 matrix into a ”transformed” T×𝑑 matrix

Transformer layers are structurally identical, but have their own parameters

Two different types of transformers in the original paper:
• Encoder: for BERT, etc whose goal is to embed text
• Decoder: for GPT etc whose goal is to generate text
• Minor differences between them

T: Sequence length
𝑑: Embedding size

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention A residual connection

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention The “novel” part of the transformer

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention The “novel” part of the transformer

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#
A residual connection

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix

The “novel” part of the transformer

• A standard two layer neural network with GELU, ReLU (or
sometimes other) activation, applied to each row separately
• Trivially parallelizable over the rows

• Hidden layer can have dimensionality larger than 𝑑	(e.g. 4𝑑)

+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix

The “novel” part of the transformer

• A standard two layer neural network with GELU, ReLU (or
sometimes other) activation, applied to each row separately
• Trivially parallelizable over the rows

• Hidden layer can have dimensionality larger than 𝑑	(e.g. 4𝑑)

• Normalizes each column of the input matrix so that the
elements have zero mean and unit variance

• Leads to more stable optimization

+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

Transformer Layer

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix

The “novel” part of the transformer

• A standard two layer neural network with GELU, ReLU (or
sometimes other) activation, applied to each row separately
• Trivially parallelizable over the rows

• Hidden layer can have dimensionality larger than 𝑑	(e.g. 4𝑑)

• Normalizes each column of the input matrix so that the
elements have zero mean and unit variance

• Leads to more stable optimization

This is the transformer encoder. The decoder transformer has a bit more
detail. We will encounter the details later

+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

𝑋$ = LayerNorm 𝑋 +𝑀𝐻𝐴 𝑋
Result = LayerNorm 𝑋$ + 𝐹𝐹𝑁 𝑋$

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

𝑋$ = LayerNorm 𝑋 +𝑀𝐻𝐴 𝑋
Result = LayerNorm 𝑋$ + 𝐹𝐹𝑁 𝑋$

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&… • ℎ self-attention (SA) networks
• Analogous to channels in a CNN

Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&…

Each produces a matrix of size 𝑇× #
'

• ℎ self-attention (SA) networks
• Analogous to channels in a CNN

Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&…

Each produces a matrix of size 𝑇× #
'

• ℎ self-attention (SA) networks
• Analogous to channels in a CNN

These matrices are simply stacked to
produce the output

Multi-head attention

T×𝑑 input matrix

T×𝑑 output matrix

SA$ SA% SA&…

Each produces a matrix of size 𝑇× #
'

• ℎ self-attention (SA) networks
• Analogous to channels in a CNN

These matrices are simply stacked to
produce the output

Self attention: An example

47
Images from https://jalammar.github.io/illustrated-transformer/

Self attention: An example

48
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter
matrices associated
with this self
attention block

Self attention: An example

49
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter
matrices associated
with this self
attention block

Self attention: An example

50
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter
matrices associated
with this self
attention block

Self attention: An example

51
Images from https://jalammar.github.io/illustrated-transformer/

Three parameter
matrices associated
with this self
attention block

For every element of
the sequence, create
three vectors that are
called its query, key
and value vectors.

Self attention: An example

52
Images from https://jalammar.github.io/illustrated-transformer/

For each word, compute the self attention.

First compute the dot product of its query
vector with the key vector of all words in
the sentence

Self attention: An example

53
Images from https://jalammar.github.io/illustrated-transformer/

For each word, compute the self attention.

Then, normalize

Self attention: An example

54
Images from https://jalammar.github.io/illustrated-transformer/

Use the attention probabilities to weigh
the value vectors to produce the output
vector for that word

Self attention: Illustrated

55
Images from https://jalammar.github.io/illustrated-transformer/

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Called the “query” in
the original paper

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Called the “query” in
the original paper

Called the “key” in
the original paper

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Called the “query” in
the original paper

Called the “key” in
the original paper

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Called the “query” in
the original paper

Called the “key” in
the original paper

Called the “value” in
the original paper

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

Called the “query” in
the original paper

Called the “key” in
the original paper

Normalized row wise

softmax 𝐴 () =
exp 𝐴()

∑* exp 𝐴(*
	

Called the “value” in
the original paper

Self attention

Given:
• A 𝑇×𝑑 matrix 𝑋

• Three 𝑑× A
B parameter matrices called 𝑊(D),𝑊(F),𝑊(G)

1. Compute the 𝑇×𝑇 matrix A = HI) HI * +

A

2. Return softmax 𝐴 𝑋𝑊(G)

𝑑×
𝑑
ℎ

𝑇×𝑇 𝑇×𝑑

The final result is a 𝑇× #
'

 matrix, i.e., one #
'

 dimensional vector per token

Called the “query” in
the original paper

Called the “key” in
the original paper

Called the “value” in
the original paper

Recall that the transformer neural network is
just layer after layer of the transformer block

Embed

Input text

Recall that the transformer neural network is
just layer after layer of the transformer block

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

…

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

…

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

…

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

+

MHA

+

FFN

LN

LN

Embed

Input text

…

+

MHA

+

FFN

LN

LN

Classifier over
final embeddings

“The Transformer paper”: NeurIPS 2017

“We propose a new simple
network architecture, the
Transformer, based solely on
attention mechanisms, dispensing
with recurrence and convolutions
entirely.”

Focus: machine translation

!!

Outline

• The challenge of modeling sequences

• The transformer architecture
– The big picture

• Details and fine print

• The impact of transformers

84

Details of the model

1. Tokenization
2. Position embeddings
3. Encoders, decoders and encoder-decoders

85

Tokenization and the vocabulary

Several options possible:
• Each character is a token
• Each word is a token

– How do we define what a “word” is?
– What about languages that are not English?

• Whitespace tokenization
– What could be the problems with this?

• Subword tokenization
– Words are broken into segments
– Example:

• figs → fig, s
• management → man, age, ment

– Segments are discovered from dataset statistics
using a technique called byte-pair encoding

86

How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

Tokenization and the vocabulary

Several options possible:
• Each character is a token
• Each word is a token

– How do we define what a “word” is?
– What about languages that are not English?

• Whitespace tokenization
– What could be the problems with this?

• Subword tokenization
– Words are broken into segments
– Example:

• figs → fig, s
• management → man, age, ment

– Segments are discovered from dataset statistics
using a technique called byte-pair encoding

87

How we break a sequence into tokens decides the vocabulary of the model, and the size of the embedding matrix

The most common
approach today

Details of the model

ü Tokenization
2. Position embeddings
3. Encoders, decoders and encoder-decoders

88

Position embeddings

89
Images from https://jalammar.github.io/illustrated-transformer/

Self attention is symmetric with respect to the
position.

If the order of the words were reversed, this will
not change the resulting vectors

This could be a problem if we need to encode
sequences

Position embeddings

90
Images from https://jalammar.github.io/illustrated-transformer/

Self attention is symmetric with respect to the
position.

If the order of the words were reversed, this will
not change the resulting vectors

This could be a problem if we need to encode
sequences

The answer: The input embeddings should
contain position information

Position information into embeddings

91

the cat saw the rat

The goal: To design a scheme such that input embeddings contain position information

Position information into embeddings

92

the cat saw the

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence

rat

Position information into embeddings

93

the0 cat1 saw2 the3

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence

rat4

Position information into embeddings

94

the0 cat1 saw2 the3

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence

rat4

Position embeddings

These embeddings are based on the
position only. They do not include any
information about what the token is

Position information into embeddings

95

the0 cat1 saw2 the3

Token embeddings

These embeddings are based on the tokens
only. They do not include any information
about where it occurs in the sequence

rat4

Position embeddings

These embeddings are based on the
position only. They do not include any
information about what the token is

+ + + + +
Input to the transformer
network is a sum of
these two embeddings

Position embeddings

We want a vector that represents integers. Many
different possibilities

The original transformer paper used

PE 𝑡, 2𝑖 = sin
𝑡

𝑁
!"
#

PE 𝑡, 2𝑖 + 1 = cos
𝑡

𝑁
!"
#

96

Position embeddings

We want a vector that represents integers. Many
different possibilities

The original transformer paper used

PE 𝑡, 2𝑖 = sin
𝑡

𝑁
!"
#

PE 𝑡, 2𝑖 + 1 = cos
𝑡

𝑁
!"
#

97
Images from https://jalammar.github.io/illustrated-transformer/

Position embeddings

We want a vector that represents integers. Many
different possibilities

The original transformer paper used

PE 𝑡, 2𝑖 = sin
𝑡

𝑁
!"
#

PE 𝑡, 2𝑖 + 1 = cos
𝑡

𝑁
!"
#

98

Even numbered
element of the
position embedding
for position 𝑡

Odd numbered
element of the
position embedding
for position 𝑡

Some
position 𝑡

Images from https://jalammar.github.io/illustrated-transformer/

Details of the model

ü Tokenization
ü Position embeddings
3. Encoders, decoders and encoder-decoders

99

Encoders, decoders and encoder-decoders

100

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

Encoders, decoders and encoder-decoders

101

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

Encoders, decoders and encoder-decoders

102

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

In the decoder mode, even if we know that the full
sequence can have T tokens, we only see a prefix of
the sequence. That is, the first k tokens.

How can we modify this architecture to
accommodate this fact?

Decoder transformers

103

In the decoder mode, even if we know that the full
sequence can have T tokens, we only see a prefix of
the sequence. That is, the first k tokens.

How can we modify this architecture to
accommodate this fact?

Answer: Modify the self-attention

In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
affect a certain token

For any token that comes after , mask future
positions before the softmax step.

That is, set those values to −∞

What happens to the corresponding softmaxes?

Decoder transformers

104

In the decoder mode, even if we know that the full
sequence can have T tokens, we only see a prefix of
the sequence. That is, the first k tokens.

How can we modify this architecture to
accommodate this fact?

Answer: Modify the self-attention

In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
affect a certain token

For any token that comes after , mask future
positions before the softmax step.

That is, set those values to −∞

What happens to the corresponding softmaxes?

Decoder transformers

105

In the decoder mode, even if we know that the full
sequence can have T tokens, we only see a prefix of
the sequence. That is, the first k tokens.

How can we modify this architecture to
accommodate this fact?

Answer: Modify the self-attention

In the decoder mode, at training time, we need to
simulate the fact that only the previous tokens can
affect a certain token

For any token that comes after , mask future
positions before the softmax step.

That is, set those values to −∞

What happens to the corresponding softmaxes?

Encoders, decoders and encoder-decoders

106

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

• Encoder: Given a full sequence of tokens (or vectors
representing them), encode it into a sequence of vectors

• Decoder: Encode a partial sequence (we do not have
access to what comes next in the sequence)

• Encoder-decoder: First encode a sequence, and then
conditioned on the encoding, decode it

The encoder-decoder mode has two transformer stacks.

Encoder
transformer stack

Decoder
transformer stack

Encoders, decoders and encoder-decoders

107

The encoder-decoder mode has two transformer stacks.

Encoder
transformer stack

Decoder
transformer stack

What we want: The decoder output should depend on
the tokens of the encoder

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

Encoders, decoders and encoder-decoders

108

The encoder-decoder mode has two transformer stacks.

Encoder
transformer stack

Decoder
transformer stack

What we want: The decoder output should depend on
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
Keys and values come from the encoder output

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

Encoders, decoders and encoder-decoders

109

The encoder-decoder mode has two transformer stacks.

Encoder
transformer stack

Decoder
transformer stack

What we want: The decoder output should depend on
the tokens of the encoder

The solution: Encoder-decoder attention
Queries come from the decoder layer below
Keys and values come from the encoder output

Few different interpretations of this in the literature
Either replace the MHA, or add a second MHA layer
after the existing one
Adds more layer norms

𝑋
T×𝑑 matrix

T×𝑑 matrix

Layer Norm

Layer Norm

MHA: ℜ!×# → ℜ!×#

T×𝑑 matrix+

Multi-head attention

+

Fully connected network

T×𝑑 matrix

FFN: ℜ!×# → ℜ!×#

Outline

• The challenge of modeling sequences

• The transformer architecture
– The big picture

• Details and fine print

• The impact of transformers

110

Impact of transformer models

• The biggest state-of-the-art increase in NLP research in the last decade is from these models
– NLP research = BERTology?
– NLP research = Transformer-powered LLMs?
– Default toolset for NLP research and products today

• More mainstream adoption of human language technology

• Growing use in computer vision as well
– Vision Transformers are comparable/better than CNN models

• Transformers power…
– …search and translation engines
– …language models
– …products like Github Copilot that convert textual description to code
– …the NLP part of systems like DALL-E that create images based on prompts

GPT (2018), 117 million
parameters

Language Modeling: 2018-today

GPT-2 (2019), 1.5 billion
parameters

GPT-3 (2020), 175 billion
parameters
NeurIPS 2020 best paper

The goal: Recursively keep generating the next word in text given words so far

The BERT family (2019-today)

• A family of models that were trained by masking words in a
sentence and asking the transformer model to fill in the
blank

Along the way, it learns what words mean!

• Original 2019 paper followed by numerous variants like
DistillBERT, RoBERTa-large/base, DeBERTa, multilingual
BERT (mBERT), XLM,…

The BERT family (2019-today)

• A family of models that were trained by masking words in a
sentence and asking the transformer model to fill in the
blank

Along the way, it learns what words mean!

• Original 2019 paper followed by numerous variants like
DistillBERT, RoBERTa-large/base, DeBERTa, multilingual
BERT (mBERT), XLM,…

A good survey of hundreds of papers

Wrapping up

Transformers are a neural network architecture designed to handle sequences
– But operate in parallel over the entire sequence

The architecture has many different building blocks
– Multi-head attention that “mixes” the input tokens
– Fully-connected layers that operate in parallel over the input tokens
– Residual connections all around
– Layer norms all around

Encoders versus decoders versus encoder-decoder blocks

Many details. A clean overview of the entire stack from the ground up is in
Mary Phuong and Marcus Hutter. 2022. Formal Algorithms for Transformers. arXiv:2207.09238 [cs].

Massive impact on the current NLP practice
– All the state-of-the-art NLP models today are built with transformers

115

