
Word Embeddings

Overview

• Representing meaning

• Word embeddings: Early work

• Word embeddings via language models

• Word2vec and Glove

• Evaluating embeddings

• Design choices and open questions

1

Overview

• Representing meaning

• Word embeddings: Early work

• Word embeddings via language models

• Word2vec and Glove

• Evaluating embeddings

• Design choices and open questions

2

Learning word embeddings

• Bengio et al 2003: Define a neural language model that embedded words
along the way

• Collobert & Weston 2008: Showed that word embeddings can actually
help many NLP tasks

• Mikolov 2013: word2vec
– Two families of widely used models

3

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

Before neural networks, this involved counting

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! =
𝑐𝑜𝑢𝑛𝑡(𝑤!, 𝑤", ⋯ ,𝑤#$!, 𝑤#)
𝑐𝑜𝑢𝑛𝑡 𝑤!, 𝑤", ⋯ ,𝑤#$!

Typically there are many ways to smooth this distribution

4

Eg, five-gram models (n=5), with Kneser Ney smoothing

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

Before neural networks, this involved counting

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! =
𝑐𝑜𝑢𝑛𝑡(𝑤!, 𝑤", ⋯ ,𝑤#$!, 𝑤#)
𝑐𝑜𝑢𝑛𝑡 𝑤!, 𝑤", ⋯ ,𝑤#$!

Typically there are many ways to smooth this distribution

5

Eg, five-gram models (n=5), with Kneser Ney smoothing

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

Before neural networks, this involved counting

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! =
𝑐𝑜𝑢𝑛𝑡(𝑤!, 𝑤", ⋯ ,𝑤#$!, 𝑤#)
𝑐𝑜𝑢𝑛𝑡 𝑤!, 𝑤", ⋯ ,𝑤#$!

Typically there are many ways to smooth this distribution

6

Eg, five-gram models (n=5), with Kneser Ney smoothing

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

Before neural networks, this involved counting

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! =
𝑐𝑜𝑢𝑛𝑡(𝑤!, 𝑤", ⋯ ,𝑤#$!, 𝑤#)
𝑐𝑜𝑢𝑛𝑡 𝑤!, 𝑤", ⋯ ,𝑤#$!

Typically there are many ways to smooth this distribution

7

Eg, five-gram models (n=5), with Kneser Ney smoothing

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

With neural networks, we can define this probability as
𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! = softmax f(𝐰!, ⋯ ,𝐰#)

𝒘!, ⋯ ,𝐰# are vectors for each word that are learned by backpropagation

8

Many variants on this theme – e.g.,
left and right context could be involved

Bengio et al 2003: What if this probability is defined by a neural network?

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

With neural networks, we can define this probability as
𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! = softmax f(𝐰!, ⋯ ,𝐰#)

𝒘!, ⋯ ,𝐰# are vectors for each word that are learned by backpropagation

9

Many variants on this theme – e.g.,
left and right context could be involved

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

With neural networks, we can define this probability as
𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! = softmax f(𝐰!, ⋯ ,𝐰#)

𝒘!, ⋯ ,𝐰# are vectors for each word that are learned by backpropagation

10

A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

With neural networks, we can define this probability as
𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! = softmax f(𝐰!, ⋯ ,𝐰#)

𝒘!, ⋯ ,𝐰# are vectors for each word that are learned by backpropagation

11

Many variants on this theme – e.g.,
left and right context could be involved

Training a neural language model

Given a sentence 𝑤!, 𝑤", ⋯ , 𝑤#, we can write its probability as

𝑃 𝑤!, 𝑤", ⋯ , 𝑤# =&𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)	

This gives us a natural definition for log loss

𝐽(𝑝𝑎𝑟𝑎𝑚𝑠) =1log𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)

12

Training a neural language model

Given a sentence 𝑤!, 𝑤", ⋯ , 𝑤#, we can write its probability as

𝑃 𝑤!, 𝑤", ⋯ , 𝑤# =&𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)	

This gives us a natural definition for log loss

𝐽(𝑝𝑎𝑟𝑎𝑚𝑠) =1log𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)

13

The language model, in this case, a neural network

Training a neural language model

Given a sentence 𝑤!, 𝑤", ⋯ , 𝑤#, we can write its probability as

𝑃 𝑤!, 𝑤", ⋯ , 𝑤# =&𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)	

This gives us a natural definition for log loss

𝐽(𝑝𝑎𝑟𝑎𝑚𝑠) =1log𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)

14

Training a neural language model

Given a sentence 𝑤!, 𝑤", ⋯ , 𝑤#, we can write its probability as

𝑃 𝑤!, 𝑤", ⋯ , 𝑤# =&𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)	

This gives us a natural definition for log loss

𝐽(𝑝𝑎𝑟𝑎𝑚𝑠) =1log𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)

15

One question left: What is a good neural network
architecture for this problem?

Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov,
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train

16

Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov,
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train

17

Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov,
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train

18

Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov,
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train

19

Context = previous
words in sentence

Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov,
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train

20

Context = previous
words in sentence

Context = previous
and next words in
sentence

Coming up…

• The word2vec models: Skipgram and CBOW

• Connection between word2vec and matrix factorization

• Glove

• Evaluating word embeddings

21

