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Learning word embeddings

• Bengio et al 2003: Define a neural language model that embedded words 
along the way

• Collobert & Weston 2008: Showed that word embeddings can actually 
help many NLP tasks

• Mikolov 2013: word2vec
– Two families of widely used models
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A brief detour: Language models

Given a sequence of words so far (𝑤!, 𝑤", ⋯ ,𝑤#$!), what is the probability of the next 
word 𝑤#?
– Eg: 𝑤!, 𝑤", ⋯ ,𝑤#$! =Once upon a …

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#

Before neural networks, this involved counting

𝑃 𝑤# 𝑤!, 𝑤", ⋯𝑤#$! =
𝑐𝑜𝑢𝑛𝑡(𝑤!, 𝑤", ⋯ ,𝑤#$!, 𝑤#)
𝑐𝑜𝑢𝑛𝑡 𝑤!, 𝑤", ⋯ ,𝑤#$!

Typically there are many ways to smooth this distribution
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Eg, five-gram models (n=5), with Kneser Ney smoothing
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Many variants on this theme – e.g., 
left and right context could be involved

Bengio et al 2003: What if this probability is defined by a neural network?
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Training a neural language model

Given a sentence 𝑤!, 𝑤", ⋯ , 𝑤#, we can write its probability as 

𝑃 𝑤!, 𝑤", ⋯ , 𝑤# =&𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)	

This gives us a natural definition for log loss

𝐽(𝑝𝑎𝑟𝑎𝑚𝑠) =1log𝑃(𝑤$ ∣ 𝑤$%!, ⋯𝑤$%&'!)
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The language model, in this case, a neural network
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One question left: What is a good neural network 
architecture for this problem?



Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no 
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov, 
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train
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Context = previous 
words in sentence



Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no 
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov, 
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train

20

Context = previous 
words in sentence

Context = previous 
and  next words in 
sentence



Coming up…

• The word2vec models: Skipgram and CBOW

• Connection between word2vec and matrix factorization

• Glove

• Evaluating word embeddings
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