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Learning word embeddings

* Bengio et al 2003: Define a neural language model that embedded words
along the way

* Collobert & Weston 2008: Showed that word embeddings can actually
help many NLP tasks

e Mikolov 2013: word2vec

— Two families of widely used models
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Given a sequence of words so far (wq, W, -*-, w,,_1), what is the probability of the next
word wy,?

— Eg: wq, Wy, -+, W,_1 =Once upon a ...
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With neural networks, we can define this probability as
P(wy | wy,way, - wp_q ) = softmax(f(wy, -+, wy,))

w1, -+, Wy, are vectors for each word that are learned by backpropagation

Many variants on this theme —e.g.,
left and right context could be involved
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Training a neural language model

Given a sentence wq, W,, -+, W, We can write its probability as

P(wy,wy, -+, wr) = HP(Wt | We_1, " We_ns1)

This gives us a natural definition for log loss

J(params) = z log P(We | We—q, " We—n41)

One question left: What is a good neural network
architecture for this problem?
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Neural network language models

* A multi-layer neural network [Bengio et al 2003]
— Words = embedding layer = hidden layers — softmax
— Cross-entropy loss
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* A multi-layer neural network [Bengio et al 2003] Context = previous
— Words = embedding layer = hidden layers — softmax
— Cross-entropy loss

words in sentence

e |nstead of producing probability, just produce a score for the next word (no
softmax) [Collobert and Weston, 2008]
— Ranking loss
— Intuition: Valid word sequences should get a higher score than invalid ones

* No need for a multi-layer network, a shallow network is good enough [Mikoloy,
2013, word2vec]
— Simpler model, fewer parameters and next words in
— Faster to train sentence

Context = previous
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Coming up...

 The word2vec models: Skipgram and CBOW

* Connection between word2vec and matrix factorization
* Glove

e Evaluating word embeddings
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