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Word embeddings via language models

The goal: To find vector embeddings of words

High level approach: 
1. Train a model for a surrogate task (in this case language modeling)
2. Word embeddings are a byproduct of this process
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Neural network language models

• A multi-layer neural network [Bengio et al 2003]
– Words → embedding layer → hidden layers → softmax
– Cross-entropy loss

• Instead of producing probability, just produce a score for the next word (no 
softmax) [Collobert and Weston, 2008]
– Ranking loss
– Intuition: Valid word sequences should get a higher score than invalid ones

• No need for a multi-layer network, a shallow network is good enough [Mikolov, 
2013, word2vec]
– Simpler model, fewer parameters
– Faster to train
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Context = previous 
words in sentence

Context = previous 
and  next words in 
sentence



This lecture

• The word2vec models: CBOW and Skipgram

• Connection between word2vec and matrix factorization

• GloVe
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Word2Vec

• Two architectures for learning word embeddings
– Skipgram and CBOW

• Both have two key differences from the older Bengio/C&W approaches
1. No hidden layers
2. Extra context (both left and right context)

• Several computational tricks to make things faster
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[Mikolov et al ICLR 2013, Mikolov et al NIPS 2013]



This lecture

• The word2vec models: CBOW and Skipgram

• Connection between word2vec and matrix factorization

• GloVe
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Continuous Bag of Words (CBOW)

Given a window of words of a length 2m + 1
Call them: 𝑥!", ⋯ , 𝑥!# 𝑥$𝑥#, ⋯ , 𝑥"

Define a probabilistic model for predicting the middle word
𝑃(𝑥! ∣ 𝑥"#	, ⋯ , 𝑥"$, 𝑥$ , ⋯ , 𝑥# )

Train the model by minimizing loss over the dataset

𝐿 =+log𝑃(𝑥! ∣ 𝑥"#	, ⋯ , 𝑥"$, 𝑥$ , ⋯ , 𝑥# )	
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Need to define 
this to complete 
the model



The CBOW model

The classification task
– Input: context words 𝑥!"	, ⋯ , 𝑥!#, 𝑥# , ⋯ , 𝑥"
– Output: the center word	𝑥$
– These words correspond to one-hot vectors

• Eg: cat would be associated with a dimension, its one-hot vector has 1 in that dimension and zero 
everywhere else

Notation:
– n: the embedding dimension (eg 300)
– V: The vocabulary of words we want to embed

Define two matrices:
1. 𝒱: a matrix of size 𝑛×|𝑉| 
2. 𝒲: a matrix of size 𝑉 ×𝑛
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The CBOW model

1. Map all the context words into the n dimensional space using 𝒱
– We get 2m vectors 𝒱𝑥!", ⋯ , 𝒱𝑥!#, 𝒱𝑥#, ⋯ , 𝒱𝑥"

2. Average these vectors to get a context vector

3𝑣 =
1
2𝑚

7
%&!",%($

"

𝒱𝑥%

3. Use this to compute a score vector for the output
𝑠𝑐𝑜𝑟𝑒 = 𝒲,𝑣

4. Use the score to compute probability via softmax 
𝑃 𝑥$ =⋅ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒲,𝑣)
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Word embeddings = Rows of the 
matrix corresponding to the 
output. That is, rows of 𝒲

Input: context 𝑥!"	, ⋯ , 𝑥!#, 𝑥# , ⋯ , 𝑥"
Output: the center word	𝑥$

n: the embedding dimension (eg 300)
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𝒲: a matrix of size 𝑉 ×𝑛



The CBOW loss: A worked example

Consider the loss for one example with context size 2 on each side. 
Denote the words by a b c d e with c being the output

• Step 1: Project a, b, d, e using the matrix 𝒱. This gives us rows of the matrix: 𝑣+, 𝑣, , 𝑣- , 𝑣..

• Step 2: Their average:

%𝑣 =
𝑣+ + 𝑣, + 𝑣/ + 𝑣-

4
• Step 3: The score = 𝒲%𝑣

– Each element of this score corresponds to the score for a single word. 

• Step 4: the probability of a word being the center word
𝑃 ⋅ 𝑎, 𝑏, 𝑑, 𝑒 = softmax(𝒲%𝑣)
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exp(𝑤)* 3𝑣)

∑%&#
|,| exp(𝑤%* 3𝑣)

The loss requires the negative log of this quantity.

𝐿𝑜𝑠𝑠 = −𝑤)* 3𝑣 + log7
%&#

|,|

exp(𝑤%* 3𝑣)	
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Exercise: Calculate the derivative of this with respect to all the w’s and the v’s 
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Exercise: Calculate the derivative of this with respect to all the w’s and the v’s 

Note that this 
sum requires 
us to iterate 
over the entire 
vocabulary for 
each example!



This lecture

• The word2vec models: CBOW and Skipgram

• Connection between word2vec and matrix factorization

• GloVe
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Skipgram

Given a window of words of a length 2m + 1
Call them: 𝑥!", ⋯ , 𝑥!# 𝑥$𝑥#, ⋯ , 𝑥"
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The other word2vec model



Skipgram

Given a window of words of a length 2m + 1
Call them: 𝑥!", ⋯ , 𝑥!# 𝑥$𝑥#, ⋯ , 𝑥"

Define a probabilistic model for predicting each context word
𝑃(𝑥ST#UVWU ∣ 𝑥!)

32

Inverts the inputs and outputs from CBOW

As far as the probabilistic model is concerned:
Input: the center word
Output: all the words in the context
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The Skipgram model

The classification task
– Input: the center word	𝑥0
– Output: context words 𝑥12	, ⋯ , 𝑥13, 𝑥3 , ⋯ , 𝑥2
– As before, these words correspond to one-hot vectors

Notation:
– n: the embedding dimension (eg 300)
– V: The vocabulary of words we want to embed

Define two matrices:
1. 𝒱: a matrix of size 𝑛×|𝑉| 
2. 𝒲: a matrix of size 𝑉 ×𝑛
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The Skipgram model

1. Map the center words into the n-dimensional space using𝒲
– We get an n dimensional vector 𝑤 = 	𝒲𝑥$

2. For the 𝑖UXcontext position, compute the score for a word occupying 
that position as

𝑣Y = 𝒱𝑤

3. Normalize the score for each position to get a probability
𝑃 𝑥Y =	⋅ 𝑥! = softmax(𝑣Y)
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2. For the 𝑖UXcontext position, compute the score for a word occupying 
that position as

𝑣Y = 𝒱𝑤

3. Normalize the score for each position to get a probability
𝑃 𝑥Y =	⋅ 𝑥! = softmax(𝑣Y)
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Remember the goal of learning: 
Make this probability highest for 
the observed words in this 
context.

Input: the center word	𝑥$
Output: context 𝑥!"	, ⋯ , 𝑥!#, 𝑥# , ⋯ , 𝑥"

n: the embedding dimension (eg 300)
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𝒲: a matrix of size 𝑉 ×𝑛



The Skipgram loss:  A worked example

Consider the loss for one example with context size 2 on each side. 
Denote the words by a b c d e with c being the output

Step 1: Get the vector 𝑤) = 	𝒲𝑐 

Step 2: For every position compute the score for a word occupying that position as 𝑣 = 𝒱𝑤)

Step 3: Normalize the score for each position using softmax

𝑃 𝑥% =⋅ 𝑥$ = 𝑐 = softmax(𝑣)
Or more specifically:

𝑃 𝑥!- = 𝑎 𝑥$ = 𝑐 =
exp 𝑣.*𝑤)

∑%&#
|,| exp(𝑣%*𝑤))
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The Skipgram loss:  A worked example
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𝑃 𝑥!- = 𝑎 𝑥$ = 𝑐 =
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∑%&#
|,| exp(𝑣%*𝑤))

The loss for this example is the sum of the negative log of this over all the context words.

𝐿𝑜𝑠𝑠 = 7
/∈{.,2,3,4}

−𝑣/*𝑤) + log7
%&#

,

exp 𝑣%*𝑤) 	
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Note that this sum 
requires us to 
iterate over the 
entire vocabulary 
for each example!



Negative sampling

• Can we make it faster?

• Answer [Mikolov et al 2013]: change the objective function and define a new 
objective function that does not have the same problem
– Negative Sampling

• The overall method is called Skipgram with Negative Sampling (SGNS)
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log(
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exp 𝑣!%𝑤& 	

This sum requires us 
to iterate over the 
entire vocabulary for 
each example!



Negative sampling: The intuition

• A new task: Given a pair of words (w, c), is this a valid pair or not?
That is, can word c occur in the context window of w or not?

• This is a binary classification problem
– We can solve this using logistic regression
– The probability of a pair of words being valid is defined as

𝑃 𝑐 𝑤 = 𝜎 𝑣%&𝑤' =
1

1 + exp(−𝑣%&𝑤')

• Positive examples are all pairs that occur in data, negative examples are all pairs that don’t occur in 
data, but this is still a massive set!

• Key insight: Instead of generating all possible negative examples, randomly sample k of them in each 
epoch of the learning loop
– That is, there are only k negatives for each positive example, instead of the entire vocabulary
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Word2vec notes

There are many other tricks that are needed to make this work and scale
– A scaling term in the loss function to ensure that frequent words do not dominate 

the loss 
– Hierarchical softmax if you don’t want to use negative sampling
–  A clever learning rate schedule
– Very efficient code

See readings for more details
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This lecture

• The word2vec models: CBOW and Skipgram

• Connection between word2vec and matrix factorization

• GloVe
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Recall: matrix factorization for embeddings

The general agenda

1. Construct a matrix word-word M whose entries are some function extracted 
from data involving words in context (e.g., counts, normalized counts, etc)

2. Factorize the matrix using SVD to produce lower dimensional embeddings of 
the words

3. Use one of the resulting matrices as word embeddings
– Or some combination thereof
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Word2vec and matrix factorization

[Levy and Goldberg, NIPS 2014]: Skipgram negative sampling is implicitly factorizing a 
specific matrix of this kind
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Word2vec and matrix factorization

[Levy and Goldberg, NIPS 2014]: Skipgram negative sampling is implicitly factorizing a 
specific matrix of this kind

Two key points to note:

1. The entries in the matrix are a shifted positive pointwise mutual information 
(SPPMI) between a word and its context word.

𝑃𝑀𝐼 𝑤, 𝑐 = log
𝑝(𝑤, 𝑐)
𝑝 𝑤 𝑝(𝑐)
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These probabilities are computed by counting 
the data and normalizing them



Word2vec and matrix factorization

[Levy and Goldberg, NIPS 2014]: Skipgram negative sampling is implicitly factorizing a 
specific matrix of this kind

Two key points to note:

1. The entries in the matrix are a shifted positive pointwise mutual information 
(SPPMI) between a word and its context word.

𝑃𝑀𝐼 𝑤, 𝑐 = log
𝑝(𝑤, 𝑐)
𝑝 𝑤 𝑝(𝑐)

𝑆𝑃𝑃𝑀𝐼 𝑤, 𝑐 = max 0, 𝑃𝑀𝐼 𝑤, 𝑐	 − log 𝑘
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Word2vec and matrix factorization

[Levy and Goldberg, NIPS 2014]: Skipgram negative sampling is implicitly factorizing a 
specific matrix of this kind

Two key points to note:

2. The matrix factorization method is not truncated SVD. 
– It instead minimizes the objective function to compute the factorized matrices
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This lecture

• The word2vec models: CBOW and Skipgram

• Connection between word2vec and matrix factorization

• GloVe [Pennington et al 2014]
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What matrix to factorize?

If we are building word embeddings by factorizing a matrix, what matrix 
should we consider?

• Word counts [Rhode et al 2005]

• Shifted PPMI (implicitly) [Mikolov 2013, Levy & Goldberg 2014]

• Another answer: log co-occurrence counts [Pennington et al 2014]
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Co-occurrence probabilities

Given two words i and j that occur in text, their co-occurrence probability is defined as the 
probability of seeing word i in the context of word j

𝑃 𝑗 𝑖 =
count(𝑗	in	context	of	𝑖)

∑4 count(𝑘	in	context	of	𝑖)
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Co-occurrence probabilities

Given two words i and j that occur in text, their co-occurrence probability is defined as the 
probability of seeing word i in the context of word j

𝑃 𝑗 𝑖 =
count(𝑗	in	context	of	𝑖)

∑4 count(𝑘	in	context	of	𝑖)

Claim: If we want to distinguish between two words, it is not enough to look at their co-
occurrences, we need to look at the ratio of their co-occurrences with other words

–  Formalizing this intuition gives us an optimization problem
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Co-occurrence ratios: An example

68
Example from Pennington et al 2014

Words that can discriminate 
between ice and steam

Equally close to 
both ice and steam

Equally far to both 
ice and steam



Co-occurrence ratios: An example

69
Example from Pennington et al 2014

Words that can discriminate 
between ice and steam

Equally close to 
both ice and steam

Equally far to both 
ice and steam

high low Close to one

“The word solid occurs 
more frequently with ice 
than it does with steam”

“The word gas occurs less 
frequently with ice than it 
does with steam”

“The words water and fashion 
occur about as frequently with 
ice than it does with steam”



The GloVe objective

Notation: 
• 𝑖	: word, 𝑗	: a context word
• w5: The word embedding for 𝑖
• 𝑐6: The context embedding for j
• 𝑏57 , 𝑏6/: Two bias terms: word and context specific
• 𝑋56: The number of times word 𝑖 occurs in the context of 𝑗

The intuition: 
1. Construct a word-context matrix whose 𝑖, 𝑗 89 entry is log	𝑋56

2. Find vectors w5 , c:and the biases 𝑏5 , 𝑐6 such that the dot product of the vectors added to the 
biases approximates the matrix entries
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The GloVe objective

Notation: 
• 𝑖	: word, 𝑗	: a context word
• w5: The word embedding for 𝑖
• 𝑐6: The context embedding for j
• 𝑏57 , 𝑏6/: Two bias terms: word and context specific
• 𝑋56: The number of times word 𝑖 occurs in the context of 𝑗

Objective

𝐽 = 	 R
5,6;3

|<|

𝑤5=𝑐6 + 𝑏5 + 𝑏6 − log𝑋56
>
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Problem: Pairs that frequently co-occur tend to dominate the objective.



The GloVe objective

Notation: 
• 𝑖	: word, 𝑗	: a context word
• w5: The word embedding for 𝑖
• 𝑐6: The context embedding for j
• 𝑏57 , 𝑏6/: Two bias terms: word and context specific
• 𝑋56: The number of times word 𝑖 occurs in the context of 𝑗

Objective

𝐽 = 	 R
5,6;3

|<|

𝑤5=𝑐6 + 𝑏5 + 𝑏6 − log𝑋56
>

73

Problem: Pairs that frequently co-occur tend to dominate the objective.

Answer: Correct for this by adding an extra term that prevents this



The GloVe objective

Notation: 
• 𝑖	: word, 𝑗	: a context word
• w5: The word embedding for 𝑖
• 𝑐6: The context embedding for j
• 𝑏57 , 𝑏6/: Two bias terms: word and context specific
• 𝑋56: The number of times word 𝑖 occurs in the context of 𝑗

Objective

𝐽 = 	 R
5,6;3

|<|

𝑓(𝑋56) 𝑤5=𝑐6 + 𝑏5 + 𝑏6 − log𝑋56
>

74

𝑓	: A weighting function that assigns lower relative importance to frequent co-occurrences



GloVe: Global Vectors

Essentially a matrix factorization method

Does not compute standard SVD though
1. Re-weighting for frequency
2. Two-way factorization, unlike SVD which produces 𝑈, Σ, V
3. Bias terms

Final word embeddings for a word: The average of the word and the 
context vectors of that word
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Summary

• We saw three different methods for training word embeddings

• Many, many, many variants and improvements exist

• Various tunable parameters/training choices:
– Dimensionality of embeddings
– Text for training the embeddings
– The context window size, whether it should be symmetric
– And the usual stuff: Learning algorithm to use, the loss function, hyper-parameters

• See references for more details
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