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What we have seen

• Basic algorithms (i.e. circa 2014) for word embeddings 

• Some hints about evaluation
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Design choices, extensions and problems

1. What is a good context?

2. Can we use syntactic windows?

3. How to pre-process the text before training?

4. Multilingual embeddings

5. Character-based/subword embeddings

6. Problems with word embeddings

4



1. Impact of contexts

• Context window size: Should we use large or small context windows?
– Large context windows makes topically similar words closer (eg: sport, baseball, referee, 

etc are grouped)
– Smaller context windows focus on syntactic or functional similarities (eg: batting, running, 

jumping, etc are grouped)

• Positional contexts: Should the context features be different for words in 
different positions?
– Eg: For word 1, if the previous word is cat, and for word 2, cat appears two words after 

it, should both instances of cat be treated similarly?
• Or should they be treated differently by encoding the position in the context?

– Positional contexts seem to help if we care about grouping syntactic function or words 
with similar parts-of-speech
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2. Syntactic windows

Idea: Instead of using proximal words in the sentence, use the dependency 
tree to decide on which words are proximal [Bansal et al 2014, Levy and Goldberg 2014, etc]
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2. Syntactic windows

Idea: Instead of using proximal words in the sentence, use the dependency 
tree to decide on which words are proximal [Bansal et al 2014, Levy and Goldberg 2014, etc]
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Dependency context may offer more information



3. Preprocessing text for word embeddings

Several choices available

– Should the words be lemmatized? 
• good, better, best map to good
• give, gives, giving, gave, etc map to give

– Should words retain their capitalization?
• Eg: Should Apple and apple be treated as the same word?

– Should very rare or frequent words be filtered out?
• Eg: of vs. octothorpe 

– Should some sentences be filtered out? 
• Eg: Long sentences, short sentences

And many more. Could be treated as hyperparameters
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4. Multilingual embeddings

Define context using translations
– [Faruqui and Dyer, 2014, Hermann and Blunsom, 2014]

General idea:
– Align two languages using an off-the-shelf bilingual aligner 

• Eg: from Giza++

– Context = words in the other language it aligns with 
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4. Multilingual embeddings

Define context using translations
– [Faruqui and Dyer, 2014, Hermann and Blunsom, 2014]

General idea:
– Align two languages using an off-the-shelf bilingual aligner 

• Eg: from Giza++

– Context = words in the other language it aligns with + context in a window
• Or other variants possible
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Somewhat decreases the problem of antonyms getting similar vectors



5. Character-based/subword embeddings

Intuition: The meaning of a word depends its context, but its own sub-units
 Example: substitute, substitution, substitutable

Common approaches to capture this rely on featurizing words instead of using 
one-hot embeddings

– Hand crafted features
– All subwords in the word
– Convolutional or recurrent networks to construct word embeddings

Perhaps especially helpful for 
1. Previously unseen words
2. Morphologically rich languages 
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6. Problems with these kinds of embeddings

• Antonyms tend to be embedded together

• Unclear how similarity is defined
– cat closer to dog or tiger?

• Embeddings may exhibit gender, racial, ethnic and other social biases 
– Eg: female names are embedded closer to stereotypically female social roles

• Word sense is ignored
– bank could be a financial institution or a river bank

• Obvious things are not talked about in text
– Eg: most sheep are white, but “black sheep” may be more frequent than “whitesheep”
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Biases in embeddings

Word embeddings may
– Represent some (protected) groups in terms of stereotypes
– Lead to models that have poorer performance for some (protected) groups than 

others

NLP systems built on such embeddings may have
– Representational harms: it reinforces the subordination of some groups along 

the lines of identity—race, class, gender, etc.
– Allocative harms: an opportunity or a resource is allocated or withheld by the 

system
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An example of stereotypes in word embeddings
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Rathore, A., et al., 2022. VERB: Visualizing and Interpreting Bias Mitigation Techniques Geometrically for Word Representations. 
ACM Transactions on Interactive Intelligent Systems.

Visualization of 50-dim word2vec from



What we saw in this unit

• Representing meaning

• Word embeddings: Early work

• Word embeddings via language models

• Word2vec and Glove

• Evaluating embeddings

• Design choices and open questions
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