Word Embeddings

Overview

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions

Overview

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions

What we have seen

• Basic algorithms (i.e. circa 2014) for word embeddings

Some hints about evaluation

Design choices, extensions and problems

- 1. What is a good context?
- 2. Can we use syntactic windows?
- 3. How to pre-process the text before training?
- 4. Multilingual embeddings
- 5. Character-based/subword embeddings
- 6. Problems with word embeddings

1. Impact of contexts

- Context window size: Should we use large or small context windows?
 - Large context windows makes topically similar words closer (eg: sport, baseball, referee, etc are grouped)
 - Smaller context windows focus on syntactic or functional similarities (eg: batting, running, jumping, etc are grouped)

1. Impact of contexts

- Context window size: Should we use large or small context windows?
 - Large context windows makes topically similar words closer (eg: sport, baseball, referee, etc are grouped)
 - Smaller context windows focus on syntactic or functional similarities (eg: batting, running, jumping, etc are grouped)
- Positional contexts: Should the context features be different for words in different positions?
 - Eg: For word 1, if the previous word is cat, and for word 2, cat appears two words after it, should both instances of cat be treated similarly?
 - Or should they be treated differently by encoding the position in the context?
 - Positional contexts seem to help if we care about grouping syntactic function or words with similar parts-of-speech

2. Syntactic windows

Idea: Instead of using proximal words in the sentence, use the dependency tree to decide on which words are proximal [Bansal et al 2014, Levy and Goldberg 2014, etc]

John saw a great white shark with his telescope

2. Syntactic windows

Idea: Instead of using proximal words in the sentence, use the dependency tree to decide on which words are proximal [Bansal et al 2014, Levy and Goldberg 2014, etc]

John saw a great white shark with his telescope

Word context may be less relevant

2. Syntactic windows

Idea: Instead of using proximal words in the sentence, use the dependency tree to decide on which words are proximal [Bansal et al 2014, Levy and Goldberg 2014, etc]

Dependency context may offer more information

3. Preprocessing text for word embeddings

Several choices available

- Should the words be lemmatized?
 - good, better, best map to good
 - give, gives, giving, gave, etc map to give
- Should words retain their capitalization?
 - Eg: Should Apple and apple be treated as the same word?
- Should very rare or frequent words be filtered out?
 - Eg: of vs. octothorpe
- Should some sentences be filtered out?
 - Eg: Long sentences, short sentences

And many more. Could be treated as hyperparameters

Define context using translations

[Faruqui and Dyer, 2014, Hermann and Blunsom, 2014]

General idea:

- Align two languages using an off-the-shelf bilingual aligner
 - Eg: from Giza++
- Context = words in the other language it aligns with

Define context using translations

- [Faruqui and Dyer, 2014, Hermann and Blunsom, 2014]

General idea:

- Align two languages using an off-the-shelf bilingual aligner
 - Eg: from Giza++
- Context = words in the other language it aligns with

Define context using translations

[Faruqui and Dyer, 2014, Hermann and Blunsom, 2014]

General idea:

- Align two languages using an off-the-shelf bilingual aligner
 - Eg: from Giza++
- Context = words in the other language it aligns with + context in a window

Define context using translations

- [Faruqui and Dyer, 2014, Hermann and Blunsom, 2014]

General idea:

- Align two languages using an off-the-shelf bilingual aligner
 - Eg: from Giza++
- Context = words in the other language it aligns with + context in a window
 - Or other variants possible

Somewhat decreases the problem of antonyms getting similar vectors

5. Character-based/subword embeddings

Intuition: The meaning of a word depends its context, but its own sub-units

Example: substitute, substitution, substitutable

Common approaches to capture this rely on featurizing words instead of using one-hot embeddings

- Hand crafted features
- All subwords in the word
- Convolutional or recurrent networks to construct word embeddings

Perhaps especially helpful for

- 1. Previously unseen words
- 2. Morphologically rich languages

6. Problems with these kinds of embeddings

- Antonyms tend to be embedded together
- Unclear how similarity is defined
 - cat closer to dog or tiger?
- Embeddings may exhibit gender, racial, ethnic and other social biases
 - Eg: female names are embedded closer to stereotypically female social roles
- Word sense is ignored
 - bank could be a financial institution or a river bank
- Obvious things are not talked about in text
 - Eg: most sheep are white, but "black sheep" may be more frequent than "whitesheep"

Biases in embeddings

Word embeddings may

- Represent some (protected) groups in terms of stereotypes
- Lead to models that have poorer performance for some (protected) groups than others

NLP systems built on such embeddings may have

- Representational harms: it reinforces the subordination of some groups along the lines of identity—race, class, gender, etc.
- Allocative harms: an opportunity or a resource is allocated or withheld by the system

An example of stereotypes in word embeddings

Visualization of 50-dim word2vec from

Rathore, A., et al., 2022. VERB: Visualizing and Interpreting Bias Mitigation Techniques Geometrically for Word Representations. *ACM Transactions on Interactive Intelligent Systems*.

What we saw in this unit

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions