A Formal View of Boosting

- given training set $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak hypothesis ("rule of thumb")

 $h_t : X \to \{-1, +1\}$ with small <u>error</u> ϵ_t on D_t : $\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$

• output final hypothesis H_{final}

AdaBoost

[Freund & Schapire]

- <u>constructing</u> *D*_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases} \\ = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i)) \end{cases}$$

where $Z_t = \text{normalization constant}$ $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0 \quad \blacksquare$

- <u>final hypothesis</u>:
 - $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right)$

Toy Example

Round 1

 $\epsilon_1 = 0.30$ $\alpha_1 = 0.42$

Round 2

 $\epsilon_2 = 0.21$ $\alpha_2 = 0.65$

Round 3

Final Hypothesis

* See demo at
www.research.att.com/~yoav/adaboost

Analyzing the training error

- <u>Theorem</u>: 🚍
 - run AdaBoost
 - let $\epsilon_t = 1/2 \gamma_t$
 - then

training error(H_{final}) $\leq \prod_{t} \left[2\sqrt{\epsilon_t(1-\epsilon_t)} \right]$ $\equiv \prod_{t} \sqrt{1-4\gamma_t^2}$ $\leq \exp\left(-2\sum_{t} \gamma_t^2\right)$

• so: if $\forall t : \gamma_t \ge \gamma > 0$ then training error $(H_{\text{final}}) \le e^{-2\gamma^2 T}$

- <u>adaptive</u>:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

Proof

- let $f(x) = \sum_{t} \alpha_t h_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(f(x))$
- <u>Step 1</u>: unwrapping recursion:

$$D_{\text{final}}(i) = \frac{1}{m} \cdot \frac{\exp\left(-y_i \sum_{t} \alpha_t h_t(x_i)\right)}{\prod_{t} Z_t}$$
$$= \frac{1}{m} \cdot \frac{e^{-y_i f(x_i)}}{\prod_{t} Z_t}$$

- <u>Step 2</u>: training error $(H_{\text{final}}) \leq \prod_{t} Z_t$
- Proof:
 - $H_{\text{final}}(x) \neq y \Rightarrow yf(x) \le 0 \Rightarrow e^{-yf(x)} \ge 1$
 - SO:

training error(H_{final}) $\blacksquare \frac{1}{m} \sum_{i} \begin{cases} 1 \text{ if } y_{i} \neq H_{\text{final}}(x_{i}) \\ 0 \text{ else} \end{cases}$ $\blacksquare \frac{1}{m} \sum_{i} e^{-y_{i}f(x_{i})}$ $\blacksquare \sum_{i} D_{\text{final}}(i) \prod_{t} Z_{t}$ $\blacksquare \prod_{t} Z_{t}$

Proof (cont.)

• <u>Step 3</u>: $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$

• Proof:

$$Z_{t} \stackrel{\boxtimes}{=} \sum_{i} D_{t}(i) \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))$$

$$\stackrel{\boxtimes}{\equiv} \sum_{i:y_{i} \neq h_{t}(x_{i})} D_{t}(i) e^{\alpha_{t}} + \sum_{i:y_{i} = h_{t}(x_{i})} D_{t}(i) e^{-\alpha_{t}}$$

$$\stackrel{\boxtimes}{\equiv} \epsilon_{t} e^{\alpha_{t}} + (1 - \epsilon_{t}) e^{-\alpha_{t}}$$

$$\stackrel{\boxtimes}{=} 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})}$$

UCI Experiments

[Freund & Schapire]

- tested AdaBoost on UCI benchmarks
- used:
 - <u>C4.5</u> (Quinlan's decision tree algorithm) \equiv
 - "<u>decision</u>[±]tumps": very simple rules of thumb that test on single attributes

