
CS 6355: Structured Prediction

Structured Prediction

Final words
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A look back

• What is a structure?

• The machine learning of interdependent variables
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Recall: A working definition of a structure

A structure is a concept that can be applied to any complex thing, whether it 
be a bicycle, a commercial company, or a carbon molecule. By complex, we 
mean:

1. It is divisible into parts,

2. There are different kinds of parts,

3. The parts are arranged in a specifiable way, and,

4. Each part has a specifiable function in the structure of the thing as a 
whole
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From the book Analysing Sentences: An Introduction to English Syntax by Noel Burton-Roberts, 1986.



An example task: Semantic Parsing

Find the largest state in the US
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An example task: Semantic Parsing

Find the largest state in the US
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name
US_STATES

size
population

capital

name
US_CITIES

state
population

SELECT expression FROM table WHERE condition

MAX (numeric list)

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

Can we automatically build the correct query from these pieces?



A plausible strategy to build the query

Find the largest state in the US
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A plausible strategy to build the query
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Or perhaps population?

• At each step many, many decisions to make

• Some decisions are simply not allowed
- A query has to be well formed!

• Even so, many possible options
- Why does “Find” map to SELECT?
- Largest by size/population/population of capital?



Standard classification tools can’t predict 
structures

X: “Find the largest state in the US.”
Y:

Classification is about making one decision
– Spam or not spam, or predict one label, etc

We need to make multiple decisions
– Each part needs a label

• Should “US” be mapped to us_states or us_cities?
• Should “Find” be mapped to SELECT or DELETE?

– The decisions interact with each other
• If the outer FROM clause talks about the table us_states, then the inner FROM clause should not talk 

about utah_counties

– How to compose the fragments together to create the whole structure?
• Should the output consist of a WHERE clause? What should go in it? 
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SELECT name
FROM us_states
WHERE size = (SELECT MAX(size) FROM us_states)



How did we get here?
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Binary classification
• Learning algorithms
• Prediction is easy: Threshold
• Features (???) 

Multiclass classification
• Different strategies

• One-vs-all, all-vs-all
• Global learning algorithms
• One feature vector per outcome

• Each outcome scored 
• Prediction = highest scoring outcome

Structured classification
• Global models or local models
• Each outcome scored 
• Prediction = highest scoring outcome
• Inference is no longer easy! 

• Makes all the difference



Structured output is…
• A graph, possibly labeled and/or directed

– Possibly from a restricted family, such as chains, trees, etc.
– A discrete representation of input
– Eg. A table, the SRL frame output, a sequence of labels etc

• A collection of inter-dependent decisions
– Eg: The sequence of decisions used to construct the output

• The result of a combinatorial optimization problem
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Representation

Procedural

Formally



Challenges with structured output

• Two challenges
1. We cannot train a separate weight vector for each possible 

inference outcome
• For multiclass, we could train one weight vector for each label 

1. We cannot enumerate all possible structures for inference
• Inference for binary/multiclass is easy

• Solution
– Decompose the output into parts that are labeled
– Define 

• how the parts interact with each other
• how labels are scored for each part 
• an inference algorithm to assign labels to all the parts
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Structured Prediction
The machine learning of interdependent variables
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Computational issues
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Model definition
What are the parts of the output? 
What are the inter-dependencies?

How to train the 
model? How to do inference?

Data annotation 
difficulty

Background 
knowledge about 

domain

Semi-
supervised/indirectly 

supervised?
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What does it mean to define the model?
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y1 y2 y3 y4

Say we want to predict four output variables from some input

x



What does it mean to define the model?
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y1 y2 y3 y4

Say we want to predict four output variables from some input

x

Option 1: Score each decision separately

Recall: Each factor is a 
local expert about all 
the random variables 
connected to it

i.e. A factor can assign 
a score to assignments 
of variables connected 
to it

Pro: Prediction is easy, each y independent Con: No consideration of interactions



What does it mean to define the model?
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y1 y2 y3 y4

Say we want to predict four output variables from some input

x

Option 2: Add pairwise factors

Recall: Each factor is a 
local expert about all 
the random variables 
connected to it

i.e. A factor can assign 
a score to assignments 
of variables connected 
to it

Pro: Accounts for pairwise dependencies Cons: Makes prediction harder, 
ignores third and higher order 
dependencies 



What does it mean to define the model?
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y1 y2 y3 y4

Say we want to predict four output variables from some input

x

Option 3: Use only order 3 factors

Recall: Each factor is a 
local expert about all 
the random variables 
connected to it

i.e. A factor can assign 
a score to assignments 
of variables connected 
to it

Pro: Accounts for order 3 dependencies Cons: Prediction even harder. 
Inference should consider all 
triples of labels now 



What does it mean to define the model?
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y1 y2 y3 y4

Say we want to predict four output variables from some input

x

Option 4: Use order 4 factors

Recall: Each factor is a 
local expert about all 
the random variables 
connected to it

i.e. A factor can assign 
a score to assignments 
of variables connected 
to it

Cons: Basically no decomposition 
over the labels!

Pro: Accounts for order 4 dependencies



What does it mean to define the model?
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y1 y2 y3 y4

Say we want to predict four output variables from some input

x Recall: Each factor is a 
local expert about all 
the random variables 
connected to it

i.e. A factor can assign 
a score to assignments 
of variables connected 
to it

How do we decide what to do?



Some aspects to consider

• Availability of supervision
– Supervised algorithms are well studied; supervision is hard (or expensive) 

to obtain 

• Complexity of model
– More complex models encode complex dependencies between parts; 

complex models make learning and inference harder

• Features
– Most of the time we will assume that we have a good feature set to model 

our problem. But do we? Can we learn a good representation?

• Domain knowledge
– Incorporating background knowledge into learning and inference in a 

mathematically sound way
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Computational issues
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Model definition
What are the parts of the output? 
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Training structured models

• Inference in training makes all the difference from multiclass/binary 
classification

• Empirical risk minimization principle
– Minimize loss over the training data
– Regularize the parameters to prevent overfitting

• We have seen different training strategies falling under this umbrella
– Conditional Random Fields
– Structural Support Vector Machines
– Structured Perceptron (doesn’t have regularization)

• Different algorithms exist
– We saw stochastic gradient descent in some detail
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Training considerations

• Train globally vs train locally
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y1 y2 y3 y4

x

Global: Train according to your final model

Pro: Learning uses all the available information
Con: Computationally expensive



Training considerations

• Train globally vs train locally
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Local: Decompose your model into smaller ones and train each one separately
Full model still used at prediction time

y1 y2 y3 y4

x
y1 y2

y2 y3

y1 y4

y3 y4

y2 y4

y1 y3

Pro: Easier to train
Con: May not capture global dependencies



Training considerations

• Local vs global
– Local learning

• Learn parameters for individual components independently 
• Learning algorithm not aware of the full structure

– Global learning
• Learn parameters for the full structure 
• Learning algorithm “knows” about the full structure

– Depends on inference complexity
– Jury still out on which one is better
– Depends on size of available data too
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How do we choose?
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Inference

• What is inference? The prediction step
– More broadly, an aggregation operation on the space of outputs for an 

example: max, expectation, sample, sum
– Different flavors: MAP, marginal, loss augmented.

• Many algorithms, solution strategies
– Combinatorial optimization, one size doesn’t fit all
– Graph algorithms, integer linear programming, heuristics, Monte Carlo 

methods, ….

• Some tradeoffs
– Programming effort
– Exact vs inexact
– Is the problem solvable with a known algorithm?
– Do we care about the exact answer?
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How do we choose?



Computational issues
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How does background knowledge affect your 
choices?

• Background knowledge biases your predictor in several ways
– What is the model?

• Maybe third order factors are not needed… etc

– Your choices for learning and inference algorithms

– Feature functions

– Constraints that prohibit certain inference outcomes
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Computational issues
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Data and how it influences your model

• Annotated data is a precious resource
– Takes specialized expertise to generate
– Or: very clever tricks (like online games that make data as a side 

effect)

• Important directions
– Learning with latent representations, indirect supervision, partial 

supervision
– In all these cases

• Learning is rarely a convex problem
• Modeling choices become very important! Bad model will hurt
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Looking ahead

Big questions (a very limited and biased set)
– Representations

• Can we learn the factorization?
• Can we learn feature functions?
• Deep learning + structures?

– Dealing with the data problem for new applications
• Clever tricks to get data
• Taming latent variable learning

– Applications
• How does structured prediction help you?
• Gathering importance as computer programs have to deal with 

uncertain, noisy inputs and make complex decisions
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